CBSE Class 9CBSE
Share
Notifications

View all notifications

In the following figure, ABC is a right triangle right angled at A. BCED, ACFG and ABMN are squares on the sides BC, CA and AB respectively. Line segment AX ⊥ DE meets BC at Y. Show that - CBSE Class 9 - Mathematics

Login
Create free account


      Forgot password?

Question

In the following figure, ABC is a right triangle right angled at A. BCED, ACFG and ABMN are squares on the sides BC, CA and AB respectively. Line segment AX ⊥ DE meets BC at Y. Show that:-

(i) ΔMBC ≅ ΔABD

(ii) ar (BYXD) = 2 ar(MBC)

(iii) ar (BYXD) = ar(ABMN)

(iv) ΔFCB ≅ ΔACE

(v) ar(CYXE) = 2 ar(FCB)

(vi) ar (CYXE) = ar(ACFG)

(vii) ar (BCED) = ar(ABMN) + ar(ACFG)

Note : Result (vii) is the famous Theorem of Pythagoras. You shall learn a simpler proof of this theorem in Class X.

Solution

(i) We know that each angle of a square is 90°.

Hence, ∠ABM = ∠DBC = 90º

⇒ ∠ABM + ∠ABC = ∠DBC + ∠ABC

⇒ ∠MBC = ∠ABD

In ΔMBC and ΔABD,

∠MBC = ∠ABD (Proved above)

MB = AB (Sides of square ABMN)

BC = BD (Sides of square BCED)

∴ ΔMBC ≅ ΔABD (SAS congruence rule)

 

(ii) We have

ΔMBC ≅ ΔABD

⇒ ar (ΔMBC) = ar (ΔABD) ... (1)

It is given that AX ⊥ DE and BD ⊥ DE (Adjacent sides of square

BDEC)

⇒ BD || AX (Two lines perpendicular to same line are parallel to each other)

ΔABD and parallelogram BYXD are on the same base BD and between the same parallels BD and AX.

∴ ar(ΔABD) = 1/2ar(BYXD)

ar(BYXD) = 2ar(ΔABD)

Area (BYXD) = 2 area (ΔMBC) [Using equation (1)] ... (2)

 

(iii) ΔMBC and parallelogram ABMN are lying on the same base MB and between same parallels MB and NC.

∴ ar(ΔMBC) = 1/2ar(ABMN)

2ar (ΔMBC) = ar (ABMN)

ar (BYXD) = ar (ABMN) [Using equation (2)] ... (3)

 

(iv) We know that each angle of a square is 90°.

∴ ∠FCA = ∠BCE = 90º

⇒ ∠FCA + ∠ACB = ∠BCE + ∠ACB

⇒ ∠FCB = ∠ACE

In ΔFCB and ΔACE,

∠FCB = ∠ACE

FC = AC (Sides of square ACFG)

CB = CE (Sides of square BCED)

ΔFCB ≅ ΔACE (SAS congruence rule)

 

(v) It is given that AX ⊥ DE and CE ⊥ DE (Adjacent sides of square BDEC)

Hence, CE || AX (Two lines perpendicular to the same line are parallel to each other)

Consider ΔACE and parallelogram CYXE

ΔACE and parallelogram CYXE are on the same base CE and between the same parallels CE and AX.

∴ ar(ΔACE) = 1/2ar(CYXE)

⇒ ar(CYXE) = 2 ar(ΔACE) ... (4)

We had proved that

∴ ΔFCB ≅ ΔACE

ar (ΔFCB) ≅ ar (ΔACE) ... (5)

On comparing equations (4) and (5), we obtain

ar (CYXE) = 2 ar (ΔFCB) ... (6)

 

(vi) Consider ΔFCB and parallelogram ACFG

ΔFCB and parallelogram ACFG are lying on the same base CF and between the same parallels CF and BG.

∴ ar(ΔFCB) = 1/2 ar(ACFG)

⇒ ar(ACFG) = 2 ar(ΔFCB)

⇒ ar (ACFG) = ar (CYXE) [Using equation (6)] ... (7)

 

(vii) From the figure, it is evident that

ar (BCED) = ar (BYXD) + ar (CYXE)

⇒ ar (BCED) = ar (ABMN) + ar (ACFG) [Using equations (3) and (7)]

  Is there an error in this question or solution?

APPEARS IN

 NCERT Solution for Mathematics Class 9 (2018 to Current)
Chapter 9: Areas of Parallelograms and Triangles
Ex. 9.40 | Q: 8 | Page no. 166
 RD Sharma Solution for Mathematics for Class 9 by R D Sharma (2018-19 Session) (2018 to Current)
Chapter 14: Areas of Parallelograms and Triangles
Ex. 14.30 | Q: 30 | Page no. 48

Video TutorialsVIEW ALL [1]

Solution In the following figure, ABC is a right triangle right angled at A. BCED, ACFG and ABMN are squares on the sides BC, CA and AB respectively. Line segment AX ⊥ DE meets BC at Y. Show that Concept: Triangles on the Same Base and Between the Same Parallels.
S
View in app×