In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
2x + 3y + 4z – 12 = 0
Advertisement Remove all ads
Solution
Let the coordinates of the foot of perpendicular P from the origin to the plane be (x1, y1, z1).
2x + 3y + 4z − 12 = 0
⇒ 2x + 3y + 4z = 12 … (1)
The direction ratios of normal are 2, 3, and 4
`:. sqrt((2)^2 + (3)^2 + (4)^2) = sqrt29`
Dividing both sides of equation (1) by sqrt29, we obtain
This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.
The coordinates of the foot of the perpendicular are given by
(ld, md, nd).
Therefore, the coordinates of the foot of the perpendicular are
Concept: Vector and Cartesian Equation of a Plane
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads