In figure, PQR is a right triangle right angled at Q and QS ⊥ PR. If PQ = 6 cm and PS = 4 cm, find QS, RS and QR.
Solution
Given, ΔPQR in which ∠Q = 90°, QS ⊥ PR and PQ = 6 cm, PS = 4 cm
In ΔSQP and ΔSRQ,
∠PSQ = ∠RSQ .....[Each equal to 90°]
∠SPQ = ∠SQR .....[Each equal to 90° – ∠R]
∴ ∠SQP ∼ ∠SRQ
Then, `(SQ)/(PS) = (SR)/(SQ)`
⇒ `SQ^2 = PS xx SR` .....(i)\
In right angled ΔPSQ,
`PQ^2 = PS^2 + QS^2 ......[By Pythagoras theorem]
⇒ `(6)^2 = (4)^2 + QS^2`
⇒ 36 = `16 + QS^2`
⇒ `QS^2 = 36 - 16 = 20`
∴ `QS = sqrt(20) = 2sqrt(5)` cm
On putting the value of QS in equation (i), we get
`(2sqrt(5))^2 = 4 xx SR`
⇒ `SR = (4 xx 5)/4` = 5 cm
In right angled ΔQSR,
`QR^2 = QS^2 + SR^2`
⇒ `QR^2 = (2sqrt(5))^2 + (5)^2`
⇒ `QR^2 = 20 + 25`
∴ `QR = sqrt(45) = 3sqrt(5)` cm
Hence, QS = `2sqrt(5)` cm, RS = 5 cm and QR = `3sqrt(5)` cm