In figure, if PQRS is a parallelogram and AB || PS, then prove that OC || SR.
Solution
Given,
PQRS is a parallelogram,
Therefore, PQ || SR and PS || QR.
Also given, AB || PS.
To prove:
OC || SR
From ∆OPS and OAB,
PS||AB
∠POS = ∠AOB ......[Common angle]
∠OSP = ∠OBA ......[Corresponding angles]
∆OPS ∼ ∆OAB ......[By AAA similarity criteria]
Then,
Using basic proportionality theorem,
We get,
`(PS)/(AB) = (OS)/(OB)` ......(i)
From ∆CQR and ∆CAB,
QR || PS || AB
∠QCR = ∠ACB ......[Common angle]
∠CRQ = ∠CBA .......[Corresponding angles]
∆CQR ∼ ∆CAB
Then, by basic proportionality theorem
`(QR)/(AB) = (CR)/(CB)`
`(PC)/(AB) = (CR)/(CB)` ......(ii)
[PS ≅ QR Since, PQRS is a parallelogram,]
From Equation (i) and (ii),
`(OS)/(OB) = (CR)/(CB)`
`(OB)/(OS) = (CB)/(CR)`
Subtracting 1 from L.H.S and R.H.S, we get,
`(OB)/(OS) - 1 = (CB)/(CR) - 1`
`(OB - OS)/(OS) = ((CB - CR))/(CR)`
`(BS)/(OS) = (BR)/(CR)`
SR || OC ......[By converse of basic proportionality theorem]
Hence proved.