Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
In figure, if DE || BC, find the ratio of ar(ΔADE) and ar (DECB).
Advertisement Remove all ads
Solution
Given, DE || BC, DE = 6 cm and BC = 12 cm
In ΔABC and ΔADE,
∠ABC = ∠ADE .......[Corresponding angle]
∠ACB = ∠AED .....[Corresponding angle]
And ∠A = ∠A .....[Common side]
∴ ΔABC ∼ ΔAED .....[By AAA similarity criterion]
Then, `(ar(ΔADE))/(ar(ΔABC)) = (DE)^2/(BC)^2`
= `(6)^2/(12)^2 = (1/2)^2`
⇒ `(ar(ΔADE))/(ar(ΔABC)) = (1/2)^2 = 1/4`
Let ar(ΔADE) = k, then ar(ΔABC) = 4k
Now, ar(DECB) = ar(ABC) – ar(ΔADE) = 4k – k = 3k
∴ Required ratio = ar(ADE) : ar(DECB) = k : 3k = 1 : 3
Concept: Similarity of Triangles
Is there an error in this question or solution?