In the figure given below AB and CD are two parallel chords and O is the centre. If the radius of the circle is 15 cm, find the distance MN between the two chords of length 24 cm and 18 cm respectively.
Advertisement Remove all ads
Solution
Construction: Join OA and OB
As OM ⊥ AB and ON ⊥ CD
∴ AM = MB = 24/2 cm = 12 cm
CN = ND = 18/2 cm = 9 cm
`:. OM = sqrt(OA^2 -AM^2) = sqrt(15^2 - 12^2) = 9 cm`
`ON = sqrt(OC^2 - CN^2) = sqrt(15^2 - 9^2 ) = 12 cm`
∴ MN = OM + ON = 9 + 12 = 21 cm
Concept: Converse: The chords of a circle which are equidistant from the centre are equal.
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads