In figure, arcs have been drawn with radii 14 cm each and with centres P, Q and R. Find the area of the shaded region.
Solution
Given that, radii of each arc (r) = 14 cm
Now, area of the sector with central ∠P = `(∠P)/360^circ xx pir^2`
= `(∠P)/360^circ xx pi xx (14)^2` cm2 ......[∵ Area of any sector with central angle θ and radius r = `(pir^2)/360^circ xx theta`]
Area of the sector with central angle = `(∠Q)/360^circ xx pir^2 = (∠Q)/360^circ xx pi xx (14)^2 cm^2`
And area of the sector with central-angle R = `(∠R)/360^circ xx pir^2 xx (∠R)/360^circ xx pi xx (14)^2 cm^2`
Therefore, sum of the areas (in cm2) of three sectors
= `(∠P)/360^circ xx pi xx (14)^2 + (∠theta)/360^circ xx pi xx (14)^2 + (∠R)/360^circ xx pi xx (14)^2`
= `(∠P + ∠Q + ∠R)/360^circ xx 196 xx pi`
= `180^circ/360^circ xx 196 pi cm^2` .....[Since, sum of all interior angles in any triangle is 180°]
= `98 pi cm^2 = 98 xx 22/7`
= `14 xx 22`
= 308 cm2
Hence, the required area of the shaded region is 308 cm2.