In Figure , two concentric circles with centre O, have radii 21cm and 42 cm. If ∠ AOB = 60°, find the area of the shaded region. [use π=22/7]
Solution 1
Solution:
Given :
Radii of inner circle = 21 cm = r
Radii of outer circle = 42 cm = R
∠AOB = θ = 60°
Also,
Area of ring = π(R2-r2)
Area of a sector `= theta/360 pir^2`
The area of shaded region = Area of ring – Area of ABCD
= Area of ring – Area of sector of Outer Circle - Area of sector of Inner Circle
`=pi(R^2-r^2)-(pi(R^2-r^2))/1 xx theta/360`
`=pi(R^2-r^2)[1-theta/360]`
`=22/7(42^2-21^2)(1-60/360)`
`=3465 cm^2`
Solution 2
Solution:
Given :
Radii of inner circle = 21 cm = r
Radii of outer circle = 42 cm = R
∠AOB = θ = 60°
Also,
Area of ring = π(R2-r2)
Area of a sector `= theta/360 pir^2`
The area of shaded region = Area of ring – Area of ABCD
= Area of ring – Area of sector of Outer Circle - Area of sector of Inner Circle
`=pi(R^2-r^2)-(pi(R^2-r^2))/1 xx theta/360`
`=pi(R^2-r^2)[1-theta/360]`
`=22/7(42^2-21^2)(1-60/360)`
`=3465 cm^2`
Solution 3
Given: Radius of the inner circle with radius OC, r = 21 cm
Radius of the inner circle with radius OA, R = 42 cm
∠AOB = 60°
Area of the circular ring
`= piR^2 - pir^2`
`=pi[R^2 - r^2]`
`=pi[42^2 - 21^2] cm^2`
Area of ACDB = area of sector AOB − area of COD
`= 60/360 xx pi xx R^2 - 60/300 xx pi xx r^2`
`= 60/360 xx pi[R^2 - r^2]`
`= 60/360 xx pi[42^2 - 21^2]`
Area of shaded region = area of circular ring − area of ACDB
`= pi[42^2 - 21^2] - 60/360 pi [42^2 - 21^2]`
`= pi[42^2 - 21^2][1 - 60/360]`
`= 22/7 (42 - 21) (42 + 21) xx 300/360`
`=3465 cm^2`