In Figure 2, two concentric circles with centre O, have radii 21 cm and 42 cm. If ∠AOB = 60°, find the area of the shaded region.
Solution
Radius of inner circle, OC = 21 cm
Radius of outer circle, OA = 42 cm
Area of a circle with radius R = `piR^2 = pi(42)^2`
Area of a circle with radius r = `pir^2 = pi(21)^2`
Area of sector AOB = `theta/360 xx piR^2 = 60/360 xx pi(42)^2 = (pi(42)^2)/6`
Area of sector COD = `theta/360 xx pir^2 = 60/360 xx pi(21)^2 = (pi(21)^2)/6`
Area of shaded portion = Area of circle with radius R - Area of circle with radius r - [Area of sector AOB - Area of sector COD]
= `pi(42)^2 - pi(21)^2 - [(pi(42)^2)/6 - (pi(21)^2)/6]`
= `pi[(42)^2 - (21)^2 - 1/6[(42)^2 - (21)^2]]`
= `pi[((42)^2 - (21)^2)(1 - 1/6)]`
= `pi[(42 - 21)(42 + 21)5/6]`
= `22/7 xx 5/6 xx 21 xx 63`
= 3465 cm2