In the Fig Two Tangents Ab and Ac Are Drawn to a Circle O Such that ∠Bac = 120°. Prove that Oa = 2ab. - Mathematics

Advertisements
Advertisements

In the fig two tangents AB and AC are drawn to a circle O such that ∠BAC = 120°. Prove that OA = 2AB.

Advertisements

Solution

Consider Centre O for given circle

∠BAC = 120°

AB and AC are tangents

From the fig.

In ΔOBA, ∠OBA = 90° [radius perpendicular to tangent at point of contact]

∠OAB = ∠OAC =`1/2`∠𝐵𝐴𝐶 =`1/2`× 120° = 60°

[Line joining Centre to external point from where tangents are drawn bisects angle formed by tangents at that external point1]

In ΔOBA, cos 60° =`(AB)/(OA)`

`1/2=(AB)/(OA)`⇒ 𝑂𝐴 = 2𝐴𝐵

 

  Is there an error in this question or solution?
Chapter 8: Circles - Exercise 8 [Page 35]

APPEARS IN

RD Sharma Class 10 Maths
Chapter 8 Circles
Exercise 8 | Q 6 | Page 35

RELATED QUESTIONS

In Fig. 8, O is the centre of a circle of radius 5 cm. T is a point such that OT = 13 cm and OT intersects circle at E. If AB is a tangent to the circle at E, find the length of AB, where TP and TQ are two tangents to the circle.


Points A(–1, y) and B(5, 7) lie on a circle with centre O(2, –3y). Find the values of y. Hence find the radius of the circle.


From a point P, 10 cm away from the centre of a circle, a tangent PT of length 8 cm is drawn. Find the radius of the circle.


A point P is 13 cm from the centre of the circle. The length of the tangent drawn from P to the circle is 12cm. Find the radius of the circle.


In fig. a circle touches all the four sides of quadrilateral ABCD with AB = 6cm, BC = 7cm, CD = 4cm. Find AD.


true or false

Sector is the region between the chord and its corresponding arc.


O is the centre of a circle of radius 10 cm. P is any point in the circle such that OP = 6 cm. A is the point travelling along the circumference. x is the distance from A to P. what are the least and the greatest values of x in cm? what is the position of the points O, P and A at these values?


In the following figure, OABC is a square. A circle is drawn with O as centre which meets OC
at P and OA at Q. Prove that:
(i) ΔOPA ≅ ΔOQC, (ii) ΔBPC ≅ ΔBQA.


In the given figure, if arc AB = arc CD, then prove that the quadrilateral ABCD is an isosceles– trapezium (O is the centre of the circle).


In the given figure, a circle touches all the four sides of a quadrilateral ABCD whose three sides are AB = 6cm, BC=7cm and CD=4 cm. Find AD.


In the given figure, PA and PB are the tangent segemtns to a circle with centre O. Show that he points A, O, B and P are concyclic.


Prove that the line segment joining the points of contact of two parallel tangents of a circle, passes through its centre.


In the given figure, O is the centre of the circle and TP is the tangent to the circle from an external point T. If ∠PBT = 30° , prove that BA : AT = 2 : 1.

 


In Fig. 1, PA and PB are two tangents drawn from an external point P to a circle with centre C and radius 4 cm. If PA ⊥ PB, then the length of each tangent is:


In figure 1, O is the centre of a circle, PQ is a chord and PT is the tangent at P.

If ∠POQ = 70°, then ∠TPQ is equal to


In the given figure, ABCD is a cyclic quadrilateral. If ∠BCD = 100° and ∠ABD = 70°, find ∠ADB.


In the given figure, O is the centre of the circle. If ∠CEA = 30°, Find the values of xy and z.

 


If the length of a chord of a circle is 16 cm and is at a distance of 15 cm from the centre of the circle, then the radius of the circle is


A chord of length 14 cm is at  a distance of 6 cm from the centre of a circle. The length of another chord at a distance of 2 cm from the centre of the circle is


An equilateral triangle ABC is inscribed in a circle with centre O. The measures of ∠BOCis


In the given figure, two tangents AB and AC are drawn to a circle with centre O such that ∠BAC = 120°. Prove that OA = 2AB.


A triangle PQR is drawn to circumscribe a circle of radius 8 cm such that the segments QT and TR, into which QR is divided by the point of contact T, are of lengths 14 cm and 16 cm respectively. If area of ∆PQR is 336 cm2, find the sides PQ and PR.


In the given figure, a ∆ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC are of lengths 8 cm and 6 cm respectively. Find the lengths of sides AB and AC, when area of ∆ABC is 84 cm2


In the given figure, BC is a tangent to the circle with centre OOE bisects AP. Prove that ΔAEO ∼ Δ ABC. 


In the given figure, PA and PB are tangents to the circle from an external point P. CD is another tangent touching the circle at Q. If PA = 12 cm, QC = QD = 3 cm, then find PC + PD.


Choose correct alternative answer and fill in the blank. 

Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is .........


Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is ______.


The point of concurrence of all angle bisectors of a triangle is called the ______.


The circle which passes through all the vertices of a triangle is called ______.


Length of a chord of a circle is 24 cm. If distance of the chord from the centre is 5 cm, then the radius of that circle is ______.


The length of the longest chord of the circle with radius 2.9 cm is ______.


Radius of a circle with centre O is 4 cm. If l(OP) = 4.2 cm, say where point P will lie.


The lengths of parallel chords which are on opposite sides of the centre of a circle are 6 cm and 8 cm. If radius of the circle is 5 cm, then the distance between these chords is ______.


Find the length of the chord of a circle in the following when: 

Radius is 1. 7cm and the distance from the centre is 1.5 cm 


Find the diameter of the circle if the length of a chord is 3.2 cm and itd distance from the centre is 1.2 cm.



In the above figure, `square`XLMT is a rectangle. LM = 21 cm, XL = 10.5 cm. Diameter of the smaller semicircle is half the diameter of the larger semicircle. Find the area of non-shaded region.


In the given figure, chord EF || chord GH. Prove that, chord EG ≅ chord FH. Fill in the blanks and write the proof. 


The figure given below shows a circle with center O in which diameter AB bisects the chord CD at point E. If CE = ED = 8 cm and EB = 4 cm,
find the radius of the circle.


In the following figure, OABC is a square. A circle is drawn with O as centre which meets OC at P and OA at Q.
Prove that:
( i ) ΔOPA ≅ ΔOQC 
( ii ) ΔBPC ≅ ΔBQA


Draw two circles of different radii. How many points these circles can have in common? What is the maximum number of common points?


Suppose you are given a circle. Describe a method by which you can find the center of this circle.


In the above figure, seg AB is a diameter of a circle with centre P. C is any point on the circle.  seg CE ⊥ seg AB. Prove that CE is the geometric mean of AE and EB. Write the proof with the help of the following steps:
a. Draw ray CE. It intersects the circle at D.
b. Show that CE = ED.
c. Write the result using the theorem of the intersection of chords inside a circle. d. Using CE = ED, complete the proof. 


In an equilateral triangle, prove that the centroid and center of the circum-circle (circumcentre) coincide.


Two concentric circles with center O have A, B, C, D as the points of intersection with the lines L shown in the figure. If AD = 12 cm and BC s = 8 cm, find the lengths of AB, CD, AC and BD.


In Fig., chords AB and CD of the circle intersect at O. AO = 5 cm, BO = 3 cm and CO = 2.5 cm. Determine the length of DO.


If O is the centre of the circle, find the value of x in each of the following figures


Use the figure given below to fill in the blank:

Tangent to a circle is _______.


Use the figure given below to fill in the blank:

If the length of RS is 5 cm, the length of PQ = _______


Use the figure given below to fill in the blank:

AB is a ______ of the circle.


Mark two points A and B ,4cm a part, Draw a circle passing through B and with A as a center


Construct a triangle ABC with AB = 4.2 cm, BC = 6 cm and AC = 5cm. Construct the circumcircle of the triangle drawn.


Construct a triangle PQR with QR = 5.5 cm, ∠Q = 60° and angle R = 45°. Construct the circumcircle cif the triangle PQR.


Construct a triangle XYZ in which XY = YZ= 4.5 cm and ZX = 5.4 cm. Draw the circumcircle of the triangle and measure its circumradius.


The diameter of a circle is 12.6 cm. State, the length of its radius.


State, if the following statement is true or false:

If the end points A and B of the line segment lie on the circumference of a circle, AB is a diameter.


State, if the following statement is true or false:

The diameters of a circle always pass through the same point in the circle.


If the radius of a circle is 5 cm, what will its diameter be?


Draw circle with the radii given below.

2 cm


Draw circle with the radii given below.

3 cm


Draw a circle with the radii given below.

4 cm


Draw a circle of any radius. Show one diameter, one radius, and one chord on that circle.


In the table below, write the names of the points in the interior and exterior of the circle and those on the circle.

Diagram Points in the interior of the circle Points in the exterior of the circle Points on the circle
     

The diameter of the circle is 52 cm and the length of one of its chord is 20 cm. Find the distance of the chord from the centre


The chord of length 30 cm is drawn at the distance of 8 cm from the centre of the circle. Find the radius of the circle


Find the length of the chord AC where AB and CD are the two diameters perpendicular to each other of a circle with radius `4sqrt(2)` cm and also find ∠OAC and ∠OCA


A chord is 12 cm away from the centre of the circle of radius 15 cm. Find the length of the chord


In a circle, AB and CD are two parallel chords with centre O and radius 10 cm such that AB = 16 cm and CD = 12 cm determine the distance between the two chords?


Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord


A chord is at a distance of 15 cm from the centre of the circle of radius 25 cm. The length of the chord is


In the figure, O is the centre of a circle and diameter AB bisects the chord CD at a point E such that CE = ED = 8 cm and EB = 4 cm. The radius of the circle is


AD is a diameter of a circle and AB is a chord If AD = 30 cm and AB = 24 cm then the distance of AB from the centre of the circle is


The ratio between the circumference and diameter of any circle is _______


A line segment which joins any two points on a circle is a ___________


The longest chord of a circle is __________


The radius of a circle of diameter 24 cm is _______


A part of circumference of a circle is called as _______


Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) diameter (d) Circumference (C)
15 cm    

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) diameter (d) Circumference (C)
    1760 cm

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) diameter (d) Circumference (C)
  24 m  

All the radii of a circle are _______________


The ______________ is the longest chord of a circle


A line segment joining any point on the circle to its center is called the _____________ of the circle


A line segment with its end points on the circle is called a ______________


Twice the radius is ________________


Find the diameter of the circle

Radius = 10 cm


Find the diameter of the circle

Radius = 6 cm


Find the radius of the circle

Diameter = 24 cm


Find the radius of the circle

Diameter = 30 cm


Find the radius of the circle

Diameter = 76 cm


Circles with centres A, B and C touch each other externally. If AB = 3 cm, BC = 3 cm, CA = 4 cm, then find the radii of each circle.


In the adjoining figure, seg DE is the chord of the circle with center C. seg CF⊥ seg DE and DE = 16 cm, then find the length of DF?


If O is the center of the circle in the figure alongside, then complete the table from the given information.

The type of arc

Type of circular arc Name of circular arc Measure of circular arc
Minor arc    
Major arc    

In figure, O is the centre of a circle, chord PQ ≅ chord RS. If ∠POR = 70° and (arc RS) = 80°, find

(i) m(arc PR)

(ii) m(arc QS) 

(iii) m(arc QSR)


In the figure, segment PQ is the diameter of the circle with center O. The tangent to the tangent circle drawn from point C on it, intersects the tangents drawn from points P and Q at points A and B respectively, prove that ∠AOB = 90°


Given: A circle inscribed in a right angled ΔABC. If ∠ACB = 90° and the radius of the circle is r.

To prove: 2r = a + b – c


In a circle with centre P, chord AB is parallel to a tangent and intersects the radius drawn from the point of contact to its midpoint. If AB = `16sqrt(3)`, then find the radius of the circle


In the figure, O is the centre of the circle, and ∠AOB = 90°, ∠ABC = 30°. Then find ∠CAB.


In the figure, a circle with center P touches the semicircle at points Q and C having center O. If diameter AB = 10, AC = 6, then find the radius x of the smaller circle.


In the given figure, point P is 26 cm away from the centre O of a circle and the length PT of the tangent drawn from P to the circle is 24 cm. Then the radius of the circle is ______ 

 


In the adjoining figure, Δ ABC is circumscribing a circle. Then, the length of BC is ______


The length of tangent from an external point on a circle is always greater than the radius of the circle.


Let s denote the semi-perimeter of a triangle ABC in which BC = a, CA = b, AB = c. If a circle touches the sides BC, CA, AB at D, E, F, respectively, prove that BD = s – b.


If AB = 12 cm, BC = 16 cm and AB is perpendicular to BC, then the radius of the circle passing through the points A, B and C is ______.


In figure, if AOB is a diameter of the circle and AC = BC, then ∠CAB is equal to ______.


In figure, if AOB is a diameter and ∠ADC = 120°, then ∠CAB = 30°.


In figure, ∠OAB = 30º and ∠OCB = 57º. Find ∠BOC and ∠AOC.


In the given figure, O is the centre of the circle. Name a chord, which is not the diameter of the circle.


In the given figure, O is the centre of the circle. Shade the smaller segment of the circle formed by CP.


From the figure, identify three radii.

 


From the figure, identify a diameter.

 


From the figure, identify a chord.


From the figure, identify a sector.


From the figure, identify a segment.


Is every diameter of a circle also a chord?


Is every chord of a circle also a diameter?


Say true or false:

Two diameters of a circle will necessarily intersect.


A figure is in the form of rectangle PQRS having a semi-circle on side QR as shown in the figure. Determine the area of the plot.


A circle of radius 3 cm with centre O and a point L outside the circle is drawn, such that OL = 7 cm. From the point L, construct a pair of tangents to the circle. Justify LM and LN are the two tangents.


AB is a chord of a circle with centre O. AOC is diameter of circle, AT is a tangent at A.

Write answers to the following questions:

  1. Draw the figure using the given information.
  2. Find the measures of ∠CAT and ∠ABC with reasons.
  3. Whether ∠CAT and ∠ABC are congruent? Justify your answer.

The circumcentre of a triangle is the point which is ______.


Share
Notifications



      Forgot password?
Use app×