Advertisement Remove all ads

In Fig. 17.31, Abcd is a Parallelogram, Ce Bisects ∠C and Af Bisects ∠A. in Each of the Following, If the Statement is True, Give a Reason for the Same: - Mathematics

Sum

In the following  Figure  ABCD is a  arallelogram, CE bisects ∠C and AF bisects ∠A. In each of the following, if the statement is true, give a reason for the same:

(i) ∠A = ∠C
(ii) \[\angle FAB = \frac{1}{2}\angle A\] 

(iii) \[\angle DCE = \frac{1}{2}\angle C\]

(iv) \[\angle CEB = \angle FAB\]

(v) CE || AF 

Advertisement Remove all ads

Solution

(i) True, since opposite angles of a parallelogram are equal.
(ii) True, as AF is the bisector of\[\angle\] A. 

(iii) True, as CE is the bisector of \[\angle\]C. 

(iv) True

\[\angle\]CEB =\[\angle\] DCE........(i)  (alternate angles) 

\[\angle\]DCE= \[\angle\] FAB.........(ii) (opposite angles of a parallelogram are equal)
            
  From equations (i) and (ii):

\[\angle\] CEB =\[\angle\]FAB 

(v) True, as corresponding angles are equal (\[\angle\] CEB =\[\angle\] FAB).

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 8 Maths
Chapter 17 Understanding Shapes-III (Special Types of Quadrilaterals)
Exercise 17.1 | Q 26 | Page 12
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×