Advertisements
Advertisements
In a cricket match, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.
Advertisements
Solution
Number of times the batswoman hits a boundary = 6
Total number of balls played = 30
∴ Number of times that the batswoman does not hit a boundary = 30 − 6 = 24
`"P (She does not hit a boundary) "="Number of times when she does not hit boundary"/"Total number of balls played" = 24/30 = 4/5`
APPEARS IN
RELATED QUESTIONS
Eleven bags of wheat flour, each marked 5 kg, actually contained the following weights of flour (in kg):- 4.97, 5.05, 5.08, 5.03, 5.00, 5.06, 5.08, 4.98, 5.04, 5.07, 5.00
Find the probability that any of these bags chosen at random contains more than 5 kg of flour.
Three coins are tossed simultaneously 100 times with the following frequencies of different outcomes:
Outcome: | No head | One head | Two heads | Three heads |
Frequency: | 14 | 38 | 36 | 12 |
If the three coins are simultaneously tossed again, compute the probability of:
(i) 2 heads coming up.
(ii) 3 heads coming up.
(iii) at least one head coming up.
(iv) getting more heads than tails.
(v) getting more tails than heads.
Following table shows the birth month of 40 students of class IX.
Jan | Feb | March | April | May | June | July | Aug | Sept | Oct | Nov | Dec |
3 | 4 | 2 | 2 | 5 | 1 | 2 | 5 | 3 | 4 | 4 | 4 |
Given below is the frequency distribution table regarding the concentration of sulphur dioxide in the air in parts per million of a certain city for 30 days.
Conc. of SO_{2} | 0.00-0.04 | 0.04-0.08 | 0.08-0.12 | 0.12-0.16 | 0.16-0.20 | 0.20-0.24 |
No. days: | 4 | 8 | 9 | 2 | 4 | 3 |
Find the probability of concentration of sulphur dioxide in the interval 0.12-0.16 on any of these days.
A big contains 4 white balls and some red balls. If the probability of drawing a white ball from the bag is `2/5`, find the number of red balls in the bag.
A company selected 4000 households at random and surveyed them to find out a relationship between income level and the number of television sets in a home. The information so obtained is listed in the following table:
Monthly income (in Rs) |
Number of Television/household | |||
0 | 1 | 2 | Above 2 | |
< 10000 | 20 | 80 | 10 | 0 |
10000 – 14999 | 10 | 240 | 60 | 0 |
15000 – 19999 | 0 | 380 | 120 | 30 |
20000 – 24999 | 0 | 520 | 370 | 80 |
25000 and above | 0 | 1100 | 760 | 220 |
Find the probability of a household earning Rs 25000 and more per year and owning 2 televisions.
Two dice are thrown simultaneously 500 times. Each time the sum of two numbers appearing on their tops is noted and recorded as given in the following table:
Sum | Frequency |
2 | 14 |
3 | 30 |
4 | 42 |
5 | 55 |
6 | 72 |
7 | 75 |
8 | 70 |
9 | 53 |
10 | 46 |
11 | 28 |
12 | 15 |
If the dice are thrown once more, what is the probability of getting a sum more than 10?
Two dice are thrown simultaneously 500 times. Each time the sum of two numbers appearing on their tops is noted and recorded as given in the following table:
Sum | Frequency |
2 | 14 |
3 | 30 |
4 | 42 |
5 | 55 |
6 | 72 |
7 | 75 |
8 | 70 |
9 | 53 |
10 | 46 |
11 | 28 |
12 | 15 |
If the dice are thrown once more, what is the probability of getting a sum between 8 and 12?
Over the past 200 working days, the number of defective parts produced by a machine is given in the following table:
Number of defective parts |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Days | 50 | 32 | 22 | 18 | 12 | 12 | 10 | 10 | 10 | 8 | 6 | 6 | 2 | 2 |
Determine the probability that tomorrow’s output will have no defective part
A recent survey found that the ages of workers in a factory is distributed as follows:
Age (in years) | 20 – 29 | 30 – 39 | 40 – 49 | 50 – 59 | 60 and above |
Number of workers | 38 | 27 | 86 | 46 | 3 |
If a person is selected at random, find the probability that the person is having age from 30 to 39 years