# In an Ap. Sp = Q, Sq = P and Sr Denotes the Sum of First R Terms. Then, Sp+Q is Equal to - Mathematics

MCQ

In an AP. Sp = q, Sq = p and Sr denotes the sum of first r terms. Then, Sp+q is equal to

• 0

• −(p + q)

•  p + q

• pq

#### Solution

In the given problem, we are given S_p - q and  S_q = p

We need to find  S_( p +q)

Now, as we know,

S_n = n/2 [ 2a + (n-1) d]

So,

S_p = p/2 [2a + (p-1) d]

q = p/2 [2a + (p-1)d]

2q = 2ap + p (p - 1)d                        .................(1)

Similarly,

S_q = q/2 [2a + (q - 1) d ]

p = q/2 [ 2a + (q - 1) d ]

2p = 2aq  + q(q-1)d                          ......................(2)

Subtracting (2) from (1), we get

2q - 2p = 2ap + [p(p - 1)d ] - 2aq - [q(q - 1 ) d ]

2q - 2p = 2a ( p - q) + [ p(p - 1 ) - q( q - 1 ) d

-2(p-q) = 2a(p-q) + [(p2 - q2)-(p-q)]

- 2 = 2a + ( p + q - 1 ) d                           ..................(3)

Now,

S_(p + q) = ( p+q)/2 [2a + ( p+q - 1 ) d ]

S_(p+q) = ((p+q))/2 (-2)                ....(Using 3 )

S_(p+q) = - (p+ q)

Thus,  S_(p+q) = - (p+ q)

Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Class 10 Maths
Chapter 5 Arithmetic Progression
Q 16 | Page 58