Advertisement Remove all ads

In an A.P., if S5 + S7 = 167 and S10=235, then find the A.P., where Sn denotes the sum of its first n terms. - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

In an A.P., if S5 + S7 = 167 and S10=235, then find the A.P., where Sn denotes the sum of its first n terms.

Advertisement Remove all ads

Solution

`"S"_5+ "S"_7= 167 and "S"_10=235`

Now `"S"_n=n/2[ 2a + (n-1) d  ]`

`"S"_5 + "S"_7=167`

⇒ `5/2 [ 2a + 4d ] + 7/2 [ 2a + 6d ] =167`

⇒  12a + 31d = 167                     .......(i)

also `"S"_10=235`

∴  `10/2 [ 2a + 9d ] = 235`

2a + 9d = 47                          .........(ii)

Multiplying equation (2) by 6, we get

   12a + 54d = 282                    .....(3)

(-) 12a + 31d = 167
     -      -           -     
              23 d = 115

`therefore d = 5`

Substituting value of d in (2), we have
2a + 9(5) = 47
2a + 45 = 47
2a = 2
a = 1
Thus, the given A.P. is 1, 6, 11, 16 ,..........

Concept: Sum of First n Terms of an AP
  Is there an error in this question or solution?
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×