Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
MCQ
Fill in the Blanks
In an AP if a = 1, an = 20 and Sn = 399, then n is ______.
Options
19
21
38
42
Advertisement Remove all ads
Solution
In an AP if a = 1, an = 20 and Sn = 399, then n is 38.
Explanation:
∵ `S_n = n/2 [2a + (n - 1)d]`
339 = `n/2 [2 xx 1 + (n - 1)d]`
798 = `2n + n(n - 1)d` ........(i)
And `a_n` = 20
⇒ `a + (n - 1)d` = 20 .....`[because a_n = a + (n - 1)d]`
⇒ `1 + (n - 1)d` = 20
⇒ `(n - 1)d` = 19 ......(ii)
Using equation (ii) in equation (i), we get
798 = `2n + 19n`
⇒ 978 = `2n`
∴ n = `798/21` = 38
Concept: Sum of First n Terms of an A.P.
Is there an error in this question or solution?