Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
In Δ ABC with the usual notations prove that `(a-b)^2 cos^2(C/2)+(a+b)^2sin^2(C/2)=c^2`
Advertisement Remove all ads
Solution
LHS= `(a-b)^2 cos^2(C/2)+(a+b)^2sin^2(C/2)`
`=a^2[cos^2(C/2)+sin^2(C/2)]+b^2[cos^2(C/2)+sin^2(C/2)]-2ab[cos^2(C/2)-sin^2(C/2)]`
`=a^2+b^2-a^2-b^2+c^2`
`=c^2`
=RHS
Hence proved
Concept: Solutions of Triangle
Is there an error in this question or solution?