In ΔABC, right angled at B. If tan A = 1/√3 , find the value of (i) sin A cos C + cos A sin C (ii) cos A cos C − sin A sin C - Mathematics

Advertisement
Advertisement
Advertisement

In ΔABC, right angled at B. If tan A = `1/sqrt3` , find the value of

(i) sin A cos C + cos A sin C

(ii) cos A cos C − sin A sin C

Advertisement

Solution

 

`tan A = 1/sqrt3`

`(BC)/(AB) = 1/ sqrt3`

If BC is k, then AB will be `sqrt3k` , where k is a positive integer.

In ΔABC,

AC2 = AB2 + BC2

`= (sqrt3k)^2 + (k)^2`

= 3k2 + k2 = 4k2

∴ AC = 2k

`sin A = ("Side adjacent to"angleA)/"Hypotenuse" = (BC)/(AC) = k/(2k) = 1/2`

`cos A = ("Side adjacent to"angleA)/"Hypotenuse" = (AB)/(AC) = (sqrt3k)/(2k) = sqrt3/2`

`sin C = ("Side adjacent to"angleC)/"Hypotenuse" = (AB)/(AC) = (sqrt3k)/(2k) = sqrt3/2`

`cos C = ("Side adjacent to"angleC)/"Hypotenuse" = (BC)/(AC) = (k)/(2k) = 1/2`

(i) sin A cos C + cos A sin C

`= (1/2)(1/2)+(sqrt3/2)(sqrt3/2) =  1/4 ++ 3/4`

= 4/4 = 1

(ii) cos A cos C − sin A sin C

`= (sqrt3/2)(1/2)-(1/2)(sqrt3/2) =  sqrt3/4 - sqrt3/4 = 0`

  Is there an error in this question or solution?
Chapter 8: Introduction to Trigonometry - Exercise 8.1 [Page 181]

APPEARS IN

NCERT Class 10 Maths
Chapter 8 Introduction to Trigonometry
Exercise 8.1 | Q 9 | Page 181
Share
Notifications



      Forgot password?
Use app×