In ΔABC, right angled at B. If tan A = `1/sqrt3` , find the value of
(i) sin A cos C + cos A sin C
(ii) cos A cos C − sin A sin C
Solution
`tan A = 1/sqrt3`
`(BC)/(AB) = 1/ sqrt3`
If BC is k, then AB will be `sqrt3k` , where k is a positive integer.
In ΔABC,
AC2 = AB2 + BC2
`= (sqrt3k)^2 + (k)^2`
= 3k2 + k2 = 4k2
∴ AC = 2k
`sin A = ("Side adjacent to"angleA)/"Hypotenuse" = (BC)/(AC) = k/(2k) = 1/2`
`cos A = ("Side adjacent to"angleA)/"Hypotenuse" = (AB)/(AC) = (sqrt3k)/(2k) = sqrt3/2`
`sin C = ("Side adjacent to"angleC)/"Hypotenuse" = (AB)/(AC) = (sqrt3k)/(2k) = sqrt3/2`
`cos C = ("Side adjacent to"angleC)/"Hypotenuse" = (BC)/(AC) = (k)/(2k) = 1/2`
(i) sin A cos C + cos A sin C
`= (1/2)(1/2)+(sqrt3/2)(sqrt3/2) = 1/4 ++ 3/4`
= 4/4 = 1
(ii) cos A cos C − sin A sin C
`= (sqrt3/2)(1/2)-(1/2)(sqrt3/2) = sqrt3/4 - sqrt3/4 = 0`