Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
In ΔABC, prove that : `tan((a-b)/2)=(a-b)/(a+b)cotC/2`
Advertisement Remove all ads
Solution
In ΔABC by sine rule, we have
`a/sinA=b/sinB=c/sinC=k`
a=ksinA,b=ksinB and c=ksinC
Now, consider
`(a-b)/(a+b)=(ksinA-ksinB)/(ksinA+ksinB)`
`=(sinA-sinB)/(sinA+sinB)`
`=(2cos((A+B)/2).sin((A-B)/2))/(2sin((A+B)/2).cos((A-B)/2))`
`=cot((A+B)/2).tan((A-B)/2)`
`=cot(pi/2-C/2).tan((A-B)/2) .....[because A+B+C=pi]`
`=tan(C/2)tan((A-B)/2)`
`(a-b)/(a+b)=tan((A-B)/2)/cot(C/2)`
`tan((A-B)/2)=(a-b)/(a+b)cot(C/2)`
Concept: Solutions of Triangle
Is there an error in this question or solution?