Sum
In ∆ABC, if `(cos "A")/"a" = (cos "B")/"b"`, then show that it is an isosceles triangle
Advertisement Remove all ads
Solution
In ∆ABC by sine rule, we have
`"a"/"sin A" = "b"/"sin B" = "k"`
∴ a = k sin A, b = k sin B
Now, `(cos "A")/"a" = (cos "B")/"b"` .......[Given]
∴ `"cos A"/"k sin A" = "cos B"/"k sin B"`
∴ `"cos A"/"sin A" = "cos B"/"sin B"`
∴ sin A cos B = cos A sin B
∴ sin A cos B − cos A sin B = 0
∴ sin (A − B) = 0 = sin 0
∴ A − B = 0
∴ A = B
Hence, ∆ABC is an isosceles triangle.
Concept: Solutions of Triangle
Is there an error in this question or solution?
APPEARS IN
Advertisement Remove all ads