Advertisement Remove all ads

In a δAbc, Ad is the Bisector of ∠A, Meeting Side Bc at D. If Ab = 5.6 Cm, Ac = 6cm and Dc = 3cm, Find Bc. - Mathematics

In a ΔABC, AD is the bisector of ∠A, meeting side BC at D.

If AB = 5.6 cm, AC = 6cm and DC = 3cm, find BC.

Advertisement Remove all ads

Solution

We have, In ΔABC, AD is the bisector of ∠A.

We know that, the internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle.

`therefore"BD"/"DC"="AB"/"AC"`

`rArr"BD"/3=5.6/6`

`rArr"BD"=(5.6xx3)/6=5.6/2=2.8 ` cm

⇒ BD = 2.8 cm

Since, BC = BD + DC

= 2.8 + 3

= 5.8 cm

∴ BC = 5.8 cm

Concept: Angle Bisector
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 10 Maths
Chapter 7 Triangles
Exercise 7.3 | Q 1.6 | Page 31
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×