In a triangle ∆PQR, N is a point on PR such that QN ⊥ PR. If PN. NR = QN2, prove that ∠PQR = 90°.
Solution
Given, ∆PQR, N is a point on PR, such that QN ⊥ PR and PN . NR = QN2
To prove: ∠PQR = 90°
Proof: We have, PN . NR = QNc
⇒ PN . NR = QN . QN
⇒ `(PN)/(QN) = (QN)/(NR)` ......(i)
In ∆QNP and ∆RNQ,
`(PN)/(QN) = (QN)/(NR)`
And ∠PNQ = ∠RNQ ......[Each equal to 90°]
∴ ∆QNP ~ ∆RNQ ......[By SAS similarity criterion]
Then, ∆QNP and ∆RNQ are equiangulars.
i.e., ∠PQN = ∠QRN
⇒ ∠RQN – ∠QPN
On adding both sides, we get
∠PQN + ∠RQN = ∠QRN + ∠QPN
⇒ ∠PQR = ∠QRN + ∠QPN .........(ii)
We know that, sum of angles of a triangle is 180°
In ∆PQR, ∠PQR + ∠QPR + ∠QRP = 180°
⇒ ∠PQR + ∠QPN + ∠QRN = 180°
[∵∠QPR = ∠QPN and ∠QRP = ∠QRN]
⇒ ∠PQR + ∠PQR = 180° .....[Using equation (ii)]
⇒ 2∠PQR = 180°
⇒ ∠PQR = `180^circ/2` = 90°
∴ ∠PQR = 90°
Hence proved.