In a right angled triangle, if length of hypotenuse is 25 cm and height is 7 cm, then what is the length of its base? - Geometry Mathematics 2

Advertisements
Advertisements
Sum

In a right angled triangle, if length of hypotenuse is 25 cm and height is 7 cm, then what is the length of its base?

Advertisements

Solution


Let ∆ABC be the given right angled triangle.

AC = 25 cm, AB = 7 cm

In ∆ABC, ∠B = 90°     ......[Given]

∴ AC2 = AB2 + BC2    .......[Pythagoras theorem]

∴ 252 = 72 + BC2

∴ 625 = 49 + BC2

∴ BC2 = 625 – 49

∴ BC2 = 576

∴ BC = 24 cm    .......[Taking square root of both sides]

∴ The length of the base of the given right angle triangle is 24 cm.

  Is there an error in this question or solution?
Chapter 2: Pythagoras Theorem - Q.1 (B)

RELATED QUESTIONS

If the sides of a triangle are 6 cm, 8 cm and 10 cm, respectively, then determine whether the triangle is a right angle triangle or not.


In triangle ABC, ∠C=90°. Let BC= a, CA= b, AB= c and let 'p' be the length of the perpendicular from 'C' on AB, prove that:

1. cp = ab

2. `1/p^2=1/a^2+1/b^2`


ABCD is a rectangle whose three vertices are B (4, 0), C(4, 3) and D(0,3). The length of one of its diagonals is 
(A) 5
(B) 4
(C) 3
(D) 25


In a right triangle ABC, right-angled at B, BC = 12 cm and AB = 5 cm. The radius of the circle inscribed in the triangle (in cm) is
(A) 4
(B) 3
(C) 2
(D) 1


Sides of triangle are given below. Determine it is a right triangle or not? In case of a right triangle, write the length of its hypotenuse. 13 cm, 12 cm, 5 cm


 In Figure, ABD is a triangle right angled at A and AC ⊥ BD. Show that AD2 = BD × CD


In the following figure, O is a point in the interior of a triangle ABC, OD ⊥ BC, OE ⊥ AC and OF ⊥ AB. Show that

(i) OA2 + OB2 + OC2 − OD2 − OE2 − OF2 = AF2 + BD2 + CE2

(ii) AF2 + BD2 + CE= AE2 + CD2 + BF2


The perpendicular from A on side BC of a Δ ABC intersects BC at D such that DB = 3CD . Prove that 2AB2 = 2AC2 + BC2.


Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, ho much string does she have out (see Figure)? If she pulls in the string at the rate of 5 cm per second, what will be the horizontal distance of the fly from her after 12 seconds?


PQR is a triangle right angled at P. If PQ = 10 cm and PR = 24 cm, find QR.


Which of the following can be the sides of a right triangle?

2.5 cm, 6.5 cm, 6 cm

In the case of right-angled triangles, identify the right angles.


Which of the following can be the sides of a right triangle?

2 cm, 2 cm, 5 cm

In the case of right-angled triangles, identify the right angles.


The diagonals of a rhombus measure 16 cm and 30 cm. Find its perimeter.


Prove that, in a right-angled triangle, the square of the hypotenuse is equal to the sum of the square of remaining two sides


Identify, with reason, if the following is a Pythagorean triplet.
(4, 9, 12)


Identify, with reason, if the following is a Pythagorean triplet.
(5, 12, 13)


Identify, with reason, if the following is a Pythagorean triplet.
(24, 70, 74)


Identify, with reason, if the following is a Pythagorean triplet.
(10, 24, 27)


Find the length diagonal of a rectangle whose length is 35 cm and breadth is 12 cm.


In the given figure, M is the midpoint of QR. ∠PRQ = 90°. Prove that, PQ= 4PM– 3PR2.


In ∆ABC, AB = 10, AC = 7, BC = 9, then find the length of the median drawn from point C to side AB.


In the given figure, point T is in the interior of rectangle PQRS, Prove that, TS+ TQ= TP+ TR(As shown in the figure, draw seg AB || side SR and A-T-B)


Find the length of the hypotenuse of a right angled triangle if remaining sides are 9 cm and 12 cm.


In ∆ABC, ∠BAC = 90°, seg BL and seg CM are medians of ∆ABC. Then prove that:
4(BL+ CM2) = 5 BC2


In a trapezium ABCD, seg AB || seg DC seg BD ⊥ seg AD, seg AC ⊥ seg BC, If AD = 15, BC = 15 and AB = 25. Find A(▢ABCD)


Digonals of parallelogram WXYZ intersect at point O. If OY =5, find WY.


In ΔMNP, ∠MNP = 90˚, seg NQ ⊥ seg MP, MQ = 9, QP = 4, find NQ.


In right angle ΔABC, if ∠B = 90°, AB = 6, BC = 8, then find AC.


A ladder 13 m long rests against a vertical wall. If the foot of the ladder is 5 m from the foot of the wall, find the distance of the other end of the ladder from the ground.


In the figure: ∠PSQ = 90o, PQ = 10 cm, QS = 6 cm and RQ = 9 cm. Calculate the length of PR.


In the given figure, ∠B = 90°, XY || BC, AB = 12 cm, AY = 8cm and AX : XB = 1 : 2 = AY : YC.

Find the lengths of AC and BC.


In the given figure, AB//CD, AB = 7 cm, BD = 25 cm and CD = 17 cm;
find the length of side BC.


In triangle ABC, given below, AB = 8 cm, BC = 6 cm and AC = 3 cm. Calculate the length of OC.



In triangle ABC, AB = AC and BD is perpendicular to AC.
Prove that: BD2 - CD2 = 2CD × AD.


Diagonals of rhombus ABCD intersect each other at point O.

Prove that: OA2 + OC2 = 2AD2 - `"BD"^2/2`


M andN are the mid-points of the sides QR and PQ respectively of a PQR, right-angled at Q.
Prove that:
(i) PM2 + RN2 = 5 MN2
(ii) 4 PM2 = 4 PQ2 + QR2
(iii) 4 RN2 = PQ2 + 4 QR2(iv) 4 (PM2 + RN2) = 5 PR2


Choose the correct alternative: 

In right-angled triangle PQR, if hypotenuse PR = 12 and PQ = 6, then what is the measure of ∠P? 


Triangle ABC is right-angled at vertex A. Calculate the length of BC, if AB = 18 cm and AC = 24 cm.


Triangle XYZ is right-angled at vertex Z. Calculate the length of YZ, if XY = 13 cm and XZ = 12 cm.


In the given figure, angle BAC = 90°, AC = 400 m, and AB = 300 m. Find the length of BC.


In the given figure, angle ACP = ∠BDP = 90°, AC = 12 m, BD = 9 m and PA= PB = 15 m. Find:
(i) CP
(ii) PD
(iii) CD


In triangle PQR, angle Q = 90°, find: PR, if PQ = 8 cm and QR = 6 cm


In triangle PQR, angle Q = 90°, find: PQ, if PR = 34 cm and QR = 30 cm


Show that the triangle ABC is a right-angled triangle; if: AB = 9 cm, BC = 40 cm and AC = 41 cm


In the given figure, AD = 13 cm, BC = 12 cm, AB = 3 cm and angle ACD = angle ABC = 90°. Find the length of DC.


A boy first goes 5 m due north and then 12 m due east. Find the distance between the initial and the final position of the boy.


Use the information given in the figure to find the length AD.


In the figure below, find the value of 'x'.


In the figure below, find the value of 'x'.


The top of a ladder of length 15 m reaches a window 9 m above the ground. What is the distance between the base of the wall and that of the ladder?


Find the Pythagorean triplets from among the following set of numbers.

3, 4, 5


Find the Pythagorean triplet from among the following set of numbers.

2, 6, 7


Find the Pythagorean triplet from among the following set of numbers.

9, 40, 41


The sides of the triangle are given below. Find out which one is the right-angled triangle?

8, 15, 17


The sides of the triangle are given below. Find out which one is the right-angled triangle?

11, 12, 15


The sides of the triangle are given below. Find out which one is the right-angled triangle?

1.5, 1.6, 1.7


From the given figure, find the length of hypotenuse AC and the perimeter of ∆ABC.


Find the length of the perpendicular of a triangle whose base is 5cm and the hypotenuse is 13cm. Also, find its area.


A man goes 10 m due east and then 24 m due north. Find the distance from the straight point.


The foot of a ladder is 6m away from a wall and its top reaches a window 8m above the ground. If the ladder is shifted in such a way that its foot is 8m away from the wall to what height does its tip reach?


Each side of rhombus is 10cm. If one of its diagonals is 16cm, find the length of the other diagonals.


In an equilateral triangle ABC, the side BC is trisected at D. Prove that 9 AD2 = 7 AB2.


In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AB2 = AD2 - BC x CE + `(1)/(4)"BC"^2`


AD is perpendicular to the side BC of an equilateral ΔABC. Prove that 4AD2 = 3AB2.


In the given figure, PQ = `"RS"/(3)` = 8cm, 3ST = 4QT = 48cm.
SHow that ∠RTP = 90°.


PQR is an isosceles triangle with PQ = PR = 10 cm and QR = 12 cm. Find the length of the perpendicular from P to QR.


A man goes 18 m due east and then 24 m due north. Find the distance of his current position from the starting point?


There are two paths that one can choose to go from Sarah’s house to James's house. One way is to take C street, and the other way requires to take B street and then A street. How much shorter is the direct path along C street?


To get from point A to point B you must avoid walking through a pond. You must walk 34 m south and 41 m east. To the nearest meter, how many meters would be saved if it were possible to make a way through the pond?


The perpendicular PS on the base QR of a ∆PQR intersects QR at S, such that QS = 3 SR. Prove that 2PQ2 = 2PR2 + QR2 


Two trains leave a railway station at the same time. The first train travels due west and the second train due north. The first train travels at a speed of `(20 "km")/"hr"` and the second train travels at `(30 "km")/"hr"`. After 2 hours, what is the distance between them?


If in a ΔPQR, PR2 = PQ2 + QR2, then the right angle of ∆PQR is at the vertex ________


Find the unknown side in the following triangles


Find the unknown side in the following triangles


An isosceles triangle has equal sides each 13 cm and a base 24 cm in length. Find its height


Find the distance between the helicopter and the ship


In triangle ABC, line I, is a perpendicular bisector of BC.
If BC = 12 cm, SM = 8 cm, find CS


The hypotenuse of a right angled triangle of sides 12 cm and 16 cm is __________


Find the length of the support cable required to support the tower with the floor


Rithika buys an LED TV which has a 25 inches screen. If its height is 7 inches, how wide is the screen? Her TV cabinet is 20 inches wide. Will the TV fit into the cabinet? Give reason


In the figure, find AR


If ΔABC ~ ΔPQR, `("ar" triangle "ABC")/("ar" triangle "PQR") = 9/4` and AB = 18 cm, then the length of PQ is ______.


For going to a city B from city A, there is a route via city C such that AC ⊥ CB, AC = 2x km and CB = 2(x + 7) km. It is proposed to construct a 26 km highway which directly connects the two cities A and B. Find how much distance will be saved in reaching city B from city A after the construction of the highway.


Prove that the area of the equilateral triangle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the equilateral triangles drawn on the other two sides of the triangle.


In an equilateral triangle PQR, prove that PS2 = 3(QS)2.


Two squares are congruent, if they have same ______.


A right-angled triangle may have all sides equal.


Two squares having same perimeter are congruent.


Two circles having same circumference are congruent.


If two legs of a right triangle are equal to two legs of another right triangle, then the right triangles are congruent.


Jiya walks 6 km due east and then 8 km due north. How far is she from her starting place?


Share
Notifications



      Forgot password?
Use app×