Maharashtra State BoardHSC Commerce 12th Board Exam
Advertisement Remove all ads

In a partially destroyed record, the following data are available: variance of X = 25, Regression equation of Y on X is 5y − x = 22 and regression equation of X on Y is 64x − 45y = 22 - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

In a partially destroyed record, the following data are available: variance of X = 25, Regression equation of Y on X is 5y − x = 22 and regression equation of X on Y is 64x − 45y = 22 Find

  1. Mean values of X and Y
  2. Standard deviation of Y
  3. Coefficient of correlation between X and Y.
Advertisement Remove all ads

Solution

Given, `sigma_"X"^2 = 25`

∴ `sigma_"X"` = 5

Regression equation of Y on X is

5y – x = 22

Regression equation of X on Y is

64x - 45y = 22

(i) Consider, the two regression equation

- x + 5y = 22       ....(i)

64x - 45y = 22    ....(ii) 

By (i) × + (ii), we get

- 9x + 45y = 198
+ 64x - 45y = 22 
55x       = 220

∴ x = 4

Substituting x = 4 in (i), we get

- 4 + 5y = 22

∴ 5y = 22 +  4

∴ y = `26/5 = 5.2`

Since the point of intersection of two regression lines is `(bar x, bar y)`,

`bar x` = mean value of X = 4 and

`bar y` = mean value of Y = 5.2

(ii) To find standard deviation of Y we should first find the coefficient of correlation between X and Y.

Regression equation of Y on X is

5y - x = 22

i.e., 5Y = X + 22

i.e., Y = `"X"/5 + 22/5`

Comparing it with Y = bYX X + a, we get

`"b"_"YX" = 1/5`

Now, regression equation of X on Y is

64x - 45y = 22

i.e., 64X - 45Y = 22

i.e., 64X = 45Y + 22

i.e., X = `"45Y"/64 + 22/64`

Comparing it with X = bXY Y + a', we get

`"b"_"XY" = 45/64`

r = `+-sqrt("b"_"XY" * "b"_"YX")`

`= +- sqrt((1/5)(45/64)) = +- sqrt(9/64) = +- 3/8`

Since bYX and bXY are positive,

r is also positive.

∴ r = `3/8`

Now, `"b"_"YX" = "r" sigma_"Y"/sigma_"X"`

∴ `1/5 = 3/8 xx sigma_"Y"/5`

∴ `sigma_"Y" = 1/5 xx 8/3 xx 5`

∴ `sigma_"Y"`= Standard deviation of Y = `8/3`

(iii) The correlation coefficient of X and Y is

r = `8/3 = 0.375`

Concept: Properties of Regression Coefficients
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×