In a ∆ABC, if a = `sqrt(3) - 1`, b = `sqrt(3) + 1` and C = 60° find the other side and other two angles
Solution
In a ∆ABC,
Given A = `sqrt(3) - 1`
B = `sqrt(3) + 1`
C = 60°
Using cosine formula
C2 = a2 + b2 – 2 ab cos C
= `(sqrt(3) - 1)^2 + (sqrt(3) + 1)^2 - 2(sqrt(3) - 1) xx (sqrt(3) + 1) cos 60^circ`
= `3 -2sqrt(3) + 1 + 3 + 2sqrt(3) + 1 - 2(3 - 1) xx 1/2`
C2 = 8 – 2 = 6
⇒ C = √6
Using since formula
`"a"/sin"A" = "b"/sin"B" = "c"/sin"C"`
`(sqrt(3) - 1)/sin"A" = (sqrt(3) + 1)/sin"B" = sqrt(6)/sin60^circ`
`(sqrt(3) - 1)/sin"A" = sqrt(6)/sin 60^circ`
`(sqrt(3) - 1)/sin"A" = sqrt(6)/(sqrt(3)/2)`
⇒ `(sqrt(3) - 1)/sin"A" = (2sqrt(3) * sqrt(2))/sqrt(3)`
⇒ `(sqrt(3) - 1)/sin"A" = 2sqrt(2)`
⇒ sin A = `(sqrt(3) - 1)/(2sqrt(2))` ......(1)
sin(45° – 30°) = sin 45° . cos 30° – cos 45° sin 30°
= `1/sqrt(2) * sqrt(3)/2 - 1/sqrt(2) * 1/2`
sin 15° = `(sqrt(3) - 1)/(2sqrt(2))` ......(2)
From equations (1) and (2), we have
sin A = sin 15°
⇒ A = 15°
In ∆ABC,
We have A + B + C = 180°
15° + B + 60° = 180°
B = 180° – 75°
B = 105°
∴ The required sides and angles are
C = `sqrt(6)`, A = 15°, B = 105°