Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
If z1 = 3, z2 = 7i, and z3 = 5 + 4i, show that (z1 + z2)z3 = z1z3 + z2z3
Advertisement Remove all ads
Solution
z1 + z2 = 3 – 7i
(z1 + z2)z3 = (3 – 7i)(5 + 4i)
= 15 + 12i – 35i + 28i2
= 15 + 12i – 35i + 28i
= 43 – 23i .......(1)
z1z3 = 3(5 + 4i) = 15 + 12i
z2z3 = – 7i(5 + 4i) = – 35i – 28i2
= – 35i + 28
z1z3 + z2z3 = (15 + 12i) + (– 35i + 28)
= 15 + 12i – 35i + 28
= 43 – 23i .......(2)
∴ From 1 and 2
(z1 + z2)z3 = z1z3 + z2z3
Hence proved.
Concept: Basic Algebraic Properties of Complex Numbers
Is there an error in this question or solution?