Advertisement Remove all ads

If Z = X 2 Tan − 1 Y X − Y 2 Tan − 1 X Y ∂ Prove that ∂ Z Z ∂ Y ∂ X = X 2 − Y 2 X 2 + Y 2 - Applied Mathematics 1

Sum

If `Z=x^2 tan-1y /x-y^2 tan -1 x/y del` 

Prove that `(del^z z)/(del_ydel_x)=(x^2-y^2)/(x^2+y^2)`

Advertisement Remove all ads

Solution

`Z=x^2 tan-1y/x-y^2 tan -1 x/y` 

Diff.W.r.t.y partially, 

`del_z/del_x=x^2 x^2/(x^2+y^2)xx -y/x^2 +tan^-1  y/x.2x-y^2 y^2/(x^2+y^2)xx1/y` 

=`x^2/(x^2+y^2)xx(-y)/1+2xtan^-1  x/y- y^3/(x^2+y^3)` 

Diff. w.r.t y partially , 

`(del^2z)/(del_ydel_x)=-x^2[-y. 2y/(x^2+y^2)^2+1/(x^2+y^2)]+2 x^2/(x^2+y^2)-[-y^3. (2y)/(x^2+y^2)^2+(3y^2)/(x^2+y^2)]`

=`[(2y^3x^2)/(x^2+y^2)^z+(-x^2)/(x^2+y^2)]+2 x^2/(x^2+y^2 )+2y^4/((x^2+y^2)^2)-(3y^2)/(x^2+y^2)` 

=`((x^2-y^2)^2xx(x^2+y^2)^1)/((x^2+y^2)^2 (x^2-y^2)^1)`

=`(x^2-y^2)/(x^2+y^2)` 

∴`(del^2  Z)/(del_y del_x)=(x^2-y^2)/(x^2+y^2)`

Hence proved. 

Concept: Logarithmic Functions
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×