Advertisement Remove all ads

If Z=Tan^1 (X/Y), Where X = 2 T , Y = 1 − T 2 , Prove that D Z D T = 2 1 + T 2 . - Applied Mathematics 1

If Z=tan^1 (x/y), where` x=2t, y=1-t^2, "prove that" d_z/d_t=2/(1+t^2).` 

Advertisement Remove all ads

Solution

`Z=tan ^-1(x/y)`     `x=2t   and    y=1-t^2` 

∴ z is the function of x and y & x and y are the functions of t. 

`Z→ tanf(x,y)→f(t)`

`Z = tan^-1 ((2t)/(1-t^2))`

Direct differentiate w.r.t t , 

`d_z/d_t=1/(1+((2t)/(1-t^2))^2xxd/dt((2t)/(1-t^2))`

=`2(1-t^2)^2/((1-t^2)^2+4t^2)xx[t.(1)/(1-t^2)^2(-2t)+1/(1-t^2)xx1]`

=` (2(1-t^2)^2)/(1+t^2)xx1/(1-t^2)^2`

∴ `d_z/d_t=2/(1+t^2)`

Hence Proved.

Concept: Review of Complex Numbers‐Algebra of Complex Number
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×