Advertisement Remove all ads

If Z=Tan^1 (X/Y), Where X = 2 T , Y = 1 − T 2 , Prove that D Z D T = 2 1 + T 2 . - Applied Mathematics 1

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

If Z=tan^1 (x/y), where` x=2t, y=1-t^2, "prove that" d_z/d_t=2/(1+t^2).` 

Advertisement Remove all ads

Solution

`Z=tan ^-1(x/y)`     `x=2t   and    y=1-t^2` 

∴ z is the function of x and y & x and y are the functions of t. 

`Z→ tanf(x,y)→f(t)`

`Z = tan^-1 ((2t)/(1-t^2))`

Direct differentiate w.r.t t , 

`d_z/d_t=1/(1+((2t)/(1-t^2))^2xxd/dt((2t)/(1-t^2))`

=`2(1-t^2)^2/((1-t^2)^2+4t^2)xx[t.(1)/(1-t^2)^2(-2t)+1/(1-t^2)xx1]`

=` (2(1-t^2)^2)/(1+t^2)xx1/(1-t^2)^2`

∴ `d_z/d_t=2/(1+t^2)`

Hence Proved.

Concept: Review of Complex Numbers‐Algebra of Complex Number
  Is there an error in this question or solution?
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×