If |z-2z+2|=π6, then the locus of z is ______. - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.

Advertisement Remove all ads

Solution

If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is circle.

Explanation:

Given that: `|(z - 2)/(z + 2)| = pi/6`

Let z = x + iy

⇒ `|(x + iy - 2)/(x + iy + 2)| = pi/6`

⇒ `|((x - 2) + iy)/((x + 2) + iy)| = pi/6`

⇒ `6|(x - 2) + iy| = pi|(x + 2) + iy|`

⇒ `6sqrt((x - 2)^2 + y^2) = pisqrt((x + 2)^2 + y^2)`

⇒ `36[x^2 + 4 - 4x + y^2] = pi^2[x^2 + 4 + 4x + y^2]`

⇒ 36x2 + 144 – 144x + 36y2 = π2x2 + 4π2 + 4π2x + π2y2

⇒ (36 – π2)x2 + (36 – π2)y2 – (144 + 4π2)x + 144 – 4π2 = 0

Which represents are equation of a circle.

Concept: Quadratic Equations
  Is there an error in this question or solution?

APPEARS IN

NCERT Mathematics Exemplar Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Exercise | Q 25.(ix) | Page 93

Video TutorialsVIEW ALL [1]

Share
Notifications

View all notifications


      Forgot password?
View in app×