###### Advertisements

###### Advertisements

If `y=sec^-1((sqrtx-1)/(x+sqrtx))+sin_1((x+sqrtx)/(sqrtx-1)), `

(A) x

(B) 1/x

(C) 1

(D) 0

###### Advertisements

#### Solution

(D)

`Let y=sec^-1((sqrtx-1)/(x+sqrtx))+sin^-1((x+sqrtx)/(sqrtx-1))`

`=cos^-1((x+sqrtx)/(sqrtx-1))+sin^-1((x+sqrtx)/(sqrtx-1)) [because sec^-1(x)=cos^-1(1/x)]`

`therefore y=pi/2`

`dy/dx=d/dx(pi/2)=0`

#### APPEARS IN

#### RELATED QUESTIONS

If `y=cos^-1(2xsqrt(1-x^2))`, find dy/dx

Find `dy/dx if y=cos^-1(sqrt(x))`

find dy/dx if `y=tan^-1((6x)/(1-5x^2))`

If y = f(x) is a differentiable function of x such that inverse function x = f^{–1} (y) exists, then prove that x is a differentiable function of y and `dx/dy=1/((dy/dx)) " where " dy/dx≠0`

If y = f (x) is a differentiable function of x such that inverse function x = f ^{–1}(y) exists, then

prove that x is a differentiable function of y and

`dx/dy=1/(dy/dx)`, Where `dy/dxne0`

Hence if `y=sin^-1x, -1<=x<=1 , -pi/2<=y<=pi/2`

then show that `dy/dx=1/sqrt(1-x^2)`, where `|x|<1`

Find `dy/dx` if `y = tan^(-1) ((5x+ 1)/(3-x-6x^2))`

If `x^y = e^(x - y)` , show that `(dy)/(dx) = logx/(1 + logx)^2`

If `x^y = e^(x - y)` , show that `(dy)/(dx) = logx/(1 + logx)^2`

The total cost function of a firm is C = x^{2} + 75x + 1600 for output x. Find the output for which the average cost ls minimum. Is C_{A}= C_{m} at this output?