Advertisement Remove all ads

If Y = E Tan − 1 X .Prove that ( 1 + X 2 ) Y N + 2 + [ 2 ( N + 1 ) X − 1 ] Y N + 1 + N ( N + 1 ) Y N = 0 - Applied Mathematics 1

Advertisement Remove all ads
Advertisement Remove all ads
Sum

If `y=e^(tan^(-1)x)`.Prove that

`(1+x^2)y_(n+2)+[2(n+1)x-1]y_(n+1)+n(n+1)y_n=0`

Advertisement Remove all ads

Solution

`y=e^(tan^(-1)x)` ……..(1)

Diff. w.r.t x ,

`y=e^(tan^(-1)x)1/(x^2+1)`

`(x^2+1)y_1=e^(tan^(-1)x)` --------(from 1)

Again diff. w.r.t x,

`(x^2+1)y_2+2xy_1=y_1` ……………(1)

Now take n th derivative by applying Leibnitz theorem, Leibnitz theorem is :

`(uv)_n=u_nv+_1^ncu_(n-1)v_1+_2^ncu_(n-2)v_2+.....+uv_n`

`u=(x^2+1),v=y_2` …for first term in eqn (1)

`u=2x,v=y_1` …for second term in eqn (1)

`therefore(1+x^2)y_(n+2)+2(n+1)xy_(n+1)+n(n+1)y_n-y_(n+1)=0`

`therefore(1+x^2)y_(n+2)+[2(n+1)x-1]y_(n+1)+n(n+1)y_n=0`

Hence Proved.

Concept: Leibnitz’S Theorem (Without Proof) and Problems
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×