If y = eax. cos bx, then prove that
`(d^2y)/(dx^2)-2ady/dx+(a^2+b^2)y=0`
Advertisement Remove all ads
Solution
y = eax. cos bx
`dy/dx=ae^(ax).cosbx-be^(ax).sinbx.........(i)`
`dy/dx=ay-be^(ax).sinbx`
`(d^2y)/(dx^2)=ady/dx-b(ae^(ax).sinbx+be^(ax).cosbx)`
`(d^2y)/(dx^2)=ady/dx-abe^(ax).sinbx-b^2e^(ax).cosbx`
`(d^2y)/(dx^2)=ady/dx-a(ay-dy/dx)-b^2y ` [Substituting beax sinbx from(i)]
`(d^2y)/(dx^2)=ady/dx-a^2y+ady/dx-b^2y`
`therefore (d^2y)/(dx^2)-2ady/dx+(a^2+b^2)y=0`
Hence Proved
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads