Advertisement Remove all ads

If Y – 2x – K = 0 Touches the Conic 3x2 – 5y2 = 15, Find the Value of K. - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

If y – 2x – k = 0 touches the conic 3x2 – 5y2 = 15, find the value of k. 

Advertisement Remove all ads

Solution

Given line is y - 2x - k = 0

or y = 2x + k

Given conic section is 3x2 - 5y2 = 15 

or `"x"^2/5 - "y"^2/3 = 1`

Here, m = 2, a2 = 5 and b2 = 3 

Line y = mx + c touches the conic section 

`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` (Hyperbola)

`"y" = "mx"+- sqrt("a"^2"m"^2 - "b"^2)`

`"2x + "k" = 2"x" +- sqrt (5(2)^2 - 3)`

`"k" = +-sqrt(20-3)`

k = `+-sqrt17`

Concept: Equation of a Line in Space
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×