Advertisement Remove all ads

If Y = ( 2 − 3 Cos X Sin X ) , Find D Y D X a T X = π 4 - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]

Advertisement Remove all ads

Solution

\[\frac{dy}{dx} = \frac{d}{dx}\left( \frac{2 - 3 \cos x}{\sin x} \right)\]
\[ = \frac{d}{dx}\left( \frac{2}{\sin x} \right) - \frac{d}{dx}\left( \frac{3 \cos x}{\sin x} \right)\]
\[ = 2\frac{d}{dx}\left( \cos ec x \right) - 3\frac{d}{dx}\left( \cot x \right)\]
\[ = - 2 \cos ec x \cot x + 3 \cos e c^2 x\]
\[\frac{dy}{dx} at x=\frac{\pi}{4}= - 2 \cos ec \frac{\pi}{4} \cot \frac{\pi}{4} + 3 \cos e c^2 \frac{\pi}{4}\]
\[ = - 2\left( \sqrt{2} \right)\left( 1 \right) + 3 \left( \sqrt{2} \right)^2 \]
\[ = - 2\sqrt{2} + 6\]
\[ = 6 - 2\sqrt{2}\]
\[\]

Concept: The Concept of Derivative - Algebra of Derivative of Functions
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Exercise 30.3 | Q 20 | Page 34

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×