If xy = 2x – y, then dddydx = ? - Mathematics and Statistics

Advertisements
Advertisements
MCQ
Fill in the Blanks

If xy = 2x – y, then `("d"y)/("d"x)` = ______

Options

  • `(xlog2 - y)/(xlog2x)`

  • `(xlog2 + y)/(xlog2x)`

  • `(xlog2 + x)/(ylog2x)`

  • `(ylog2 - x)/(xlog2x)`

Advertisements

Solution

If xy = 2x – y, then `("d"y)/("d"x)` =`bbunderline((xlog2 + y)/(xlog2x))`

Concept: The Concept of Derivative - Derivatives of Logarithmic Functions
  Is there an error in this question or solution?
Chapter 1.3: Differentiation - Q.1

RELATED QUESTIONS

Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`


Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`


Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`


Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`


Find `"dy"/"dx"`if, y = `("x")^"x" + ("a"^"x")`


Fill in the Blank

If 0 = log(xy) + a, then `"dy"/"dx" =  (-"y")/square`


Fill in the blank.

If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____


The derivative of ax is ax log a.


Choose the correct alternative:

If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?


If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt 


Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx


Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x 


Find `("d"y)/("d"x)`, if y = `x^(x^x)`


If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


If y = x . log x then `dy/dx` = ______.


If y = (log x)2 the `dy/dx` = ______.


Find `dy/dx  "if",y=x^(e^x) `


Find `dy/dx  "if",  y = x^(e^x)`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx , if y^x = e^(x+y)`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx if, y =  x^(e^x)`


Find `dy / dx` if, `y = x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Share
Notifications



      Forgot password?
Use app×