MCQ
If (x + y)3 − (x − y)3 − 6y(x2 − y2) = ky2, then k =
Options
1
2
4
8
Advertisement Remove all ads
Solution
The given equation is
(x + y)3 − (x − y)3 − 6y(x2 − y2) = ky2
Recall the formula
`a^3 - b^3 = (a-b)(a^2 +ab +b^2)`
Using the above formula, we have
`(x+y)^3 - (x-y)^3 - 6y(x^2 -y^2 )ky^2`
`⇒ {(x+y)^3 - (x-y)^3} - 6y (x^2 - y^2) = ky^2`
` ⇒ 2y(x^2 + 2xy + y^2 +x^2 - y^2 - x^2 - 2xy +y^2) -6y(x^2 - y^2) = ky^3`
`⇒ 2y(3x^2 +y^2) -6y(x^2 - y^2) = ky^3`
`⇒6x^2y +2y^3 - 6x^2 y +6y^3 = ky^3`
`⇒ 8y^3 = ky^3`
`⇒ ky^3 = 8y^3`
⇒ k =8, provided y ≠0.
Concept: Algebraic Expressions
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads