Advertisement Remove all ads

If X = Uv, Y = U + V U − V . Find ∂ ( U , V ) ∂ ( X , Y ) . - Applied Mathematics 1

If x = uv, y `=(u+v)/(u-v).`find `(del(u,v))/(del(x,y))`.

Advertisement Remove all ads

Solution

`(del(u,v))/(del(x,y))= `\[\begin{vmatrix}u_x & u_y \\ v_x & v_y\end{vmatrix}\] =\[ \begin{vmatrix} \frac{\delta x}{\delta u} & \frac{\delta x}{\delta v} \\ \frac{\delta y}{\delta u} & \frac{\delta y}{\delta v}\end{vmatrix}\]

`(del x)/(del u)=del(uv)=v.`..................(2)

`(delx)/(delv)=del(uv)=u.`....................(3)

`(dely)/(delu)=del((u+v)/(u-v))=((u-v)-(u+v))/((u-v)^2)=(-2v)/(u-v)^2`...............(4)

`(dely)/(delv)=del((u+v)/(u-v))=((u-v)+(u+v))/(u-v)^2=(2u)/((u-v)^2` ....................(5)

From equation (2),(3),(4),(5) we get,

\[\begin{vmatrix} \frac{\delta x}{\delta u} & \frac{\delta x}{\delta v} \\ \frac{\delta y}{\delta u} & \frac{\delta y}{\delta v}\end{vmatrix}\] = \[\begin{vmatrix} v & u \\  \frac {-2v} {u-v}^2 & \frac {2u} {uv} \end{vmatrix}\] = `(2uv)/(u-v)^2+(2uv)/(u-v)^2=(4uv)/(u-v)^2`

From (1) we get,

JJ’=1

J`xx(4uv)/(u-v)^2=1` .........................(let J'=`(4uv)/(u-v)^2`)

Hence J = `(u-v)^2/(4uv)`

`therefore e^(2varphi)=cot (alpha/2)`

Concept: Review of Complex Numbers‐Algebra of Complex Number
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×