###### Advertisements

###### Advertisements

`"If" x=uv & y=u/v "prove that" jj^1=1`

###### Advertisements

#### Solution

`x= uv and y=u/v`

∴ x and y are function of u and v .

∴ `u=sqrtxy` ∴` v= sqrt(x/y)` ...........{from given eqns}

`j= |[x_u,x_v],[y_u,y_v] ||[v,u],[1/v, -u/v^2] |=-u/v-u/v=(-2u)/v` ................(1)

`j^1 =|[u_x,u_y],[v_x,v_y] |=|[sqrty/(2sqrtx),sqrtx/(2sqrty)],[1/(2sqrtxy), -sqrtx/(2ysqrty)] | = -sqrt(x/y)/(2sqrtxy)=-v/2u`

∴` jj^1=(-2u)/vxx(-v)/(2u)=1`

∴` jj^1=1`

Hence Proved.

Concept: .Circular Functions of Complex Number

Is there an error in this question or solution?