MCQ
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
Options
θ, ϕ
r, θ
r, ϕ
r
Advertisement Remove all ads
Solution
θ, ϕ
We have:
x = r sin θ cos ϕ , y = r sin θ sin ϕ and z = r cos θ,
∴ x2 + y2 + z2
\[= \left( r \sin\theta \cos\phi \right)^2 + \left( r \sin\theta \sin\phi \right)^2 + \left( r \cos\theta \right)^2 \]
\[ = r^2 \sin^2 \theta \cos^2 \phi + r^2 \sin^2 \theta \sin^2 \phi + r^2 \cos^2 \theta \]
\[ = r^2 \sin^2 \theta \left( \cos^2 \phi + \sin^2 \phi \right) + r^2 \cos^2 \theta \]
\[ = r^2 \sin^2 \theta \times 1 + r^2 \cos^2 \theta\]
\[ = r^2 \sin^2 \theta + r^2 \cos^2 \theta\]
\[ = r^2 \left( \sin^2 \theta + \cos^2 \theta \right)\]
\[ = r^2 \times 1\]
\[ = r^2 \]
\[\text{ Thus, }x^2 + y^2 + z^2\text{ is independent of }\theta\text{ and }\phi .\]
Concept: Trigonometric Equations
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads