###### Advertisements

###### Advertisements

If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`

Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`

###### Advertisements

#### Solution

Given that

x cos(a+y)=cosy...1

`=>x=(cosy)/cos(a+y)`

Differentiating both sides of the equation (1), we have,

`x xx(-sin(a+y))(dy)/(dx)+1xxcos(a+y)=-siny(dy)/dx`

`=>[siny-xsin(a+y)](dy)/dx=-cos(a+y)`

`=>[siny-cosy/cos(a+y)sin(a+y)]dy/(dx)=-cos(a+y)`

`=>[(cos(a+y)xxsiny-cosysin(a+y))/cos(a+y)]dx/dy=-cos(a+y)`

`=>[sin(a+y-y)]dy/dx=-cos^2(a+y) `

`=>[sina]dy/dx=-cos^2(a+y)`

`=>dy/dx=((-cos^2(a+y))/sina) `

Differentiating once again with respect to x, we have,

`sina(d^2y)/dx^2=-2cos(a+y)sin(a+y)dy/dx`

`=>sina((d^2y)/dx^2)+2cos(a+y)sin(a+y)dy/dx=0`

`=>sina(d^2y)/dx^2+sin2(a+y)dy/dx=0`

Hence proved.

#### APPEARS IN

#### RELATED QUESTIONS

If *x* = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`

If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`

If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`

**Find the second order derivative of the function.**

`x^20`

**Find the second order derivative of the function.**

x . cos x

**Find the second order derivative of the function.**

log x

**Find the second order derivative of the function.**

x^{3} log x

**Find the second order derivative of the function.**

e^{x} sin 5x

**Find the second order derivative of the function.**

e^{6x} cos 3x

**Find the second order derivative of the function.**

tan^{–1} x

If y = 5 cos x – 3 sin x, prove that `(d^2y)/(dx^2) + y = 0`

If y = 3 cos (log x) + 4 sin (log x), show that x^{2} y_{2} + xy_{1} + y = 0

If y = Ae^{mx} + Be^{nx}, show that `(d^2y)/dx^2 - (m+ n) (dy)/dx + mny = 0`

If y = 500e^{7x} + 600e^{–7x}, show that `(d^2y)/(dx^2) = 49y`

If x^{7} . y^{9} = (x + y)^{16} then show that `"dy"/"dx" = "y"/"x"`

If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`

Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`

Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`

Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`

Find `("d"^2"y")/"dx"^2`, if y = `"e"^"log x"`

Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`

Find `("d"^2"y")/"dx"^2`, if y = log (x).

Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at^{2}

Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`

If x^{2} + 6xy + y^{2} = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`

`sin xy + x/y` = x^{2} – y

sec(x + y) = xy

tan^{–1}(x^{2} + y^{2}) = a

(x^{2} + y^{2})^{2} = xy

If ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1

Derivative of cot x° with respect to x is ____________.

If x^{2} + y^{2} + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.

Let for i = 1, 2, 3, p_{i}(x) be a polynomial of degree 2 in x, p'_{i}(x) and p''_{i}(x) be the first and second order derivatives of p_{i}(x) respectively. Let,

A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`

and B(x) = [A(x)]^{T} A(x). Then determinant of B(x) ______

If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.

If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.

If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.

**Read the following passage and answer the questions given below:**

The relation between the height of the plant ('y' in cm) with respect to its exposure to the sunlight is governed by the following equation y = `4x - 1/2 x^2`, where 'x' is the number of days exposed to the sunlight, for x ≤ 3. |

- Find the rate of growth of the plant with respect to the number of days exposed to the sunlight.
- Does the rate of growth of the plant increase or decrease in the first three days? What will be the height of the plant after 2 days?

`"Find" (d^2y)/(dx^2) "if" y=e^((2x+1))`

Find `(d^2y)/dx^2 if, y = e^((2x + 1))`

Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`

Find `(d^2y)/dx^2` if,** **`y = e^((2x + 1))`

Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`

Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`

Find `(d^2y)/dx^2 "if," y= e^((2x+1))`

Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`

Find `(d^2y)/dx^2` if, y = `e^(2x +1)`