If x cos(a+y)= cosy then prove that dy/dx=(cos^2(a+y)/sina) Hence show that sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0 - Mathematics and Statistics

Advertisements
Advertisements

If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`

Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`

Advertisements

Solution

Given that

x cos(a+y)=cosy...1

`=>x=(cosy)/cos(a+y)`

Differentiating both sides of the equation (1), we have,

`x xx(-sin(a+y))(dy)/(dx)+1xxcos(a+y)=-siny(dy)/dx`

`=>[siny-xsin(a+y)](dy)/dx=-cos(a+y)`

`=>[siny-cosy/cos(a+y)sin(a+y)]dy/(dx)=-cos(a+y)`

 `=>[(cos(a+y)xxsiny-cosysin(a+y))/cos(a+y)]dx/dy=-cos(a+y)`

 `=>[sin(a+y-y)]dy/dx=-cos^2(a+y) `

`=>[sina]dy/dx=-cos^2(a+y)`

`=>dy/dx=((-cos^2(a+y))/sina) `

 Differentiating once again with respect to x, we have,

`sina(d^2y)/dx^2=-2cos(a+y)sin(a+y)dy/dx`

`=>sina((d^2y)/dx^2)+2cos(a+y)sin(a+y)dy/dx=0`

`=>sina(d^2y)/dx^2+sin2(a+y)dy/dx=0`

Hence proved.

  Is there an error in this question or solution?
2015-2016 (March) All India Set 1 N

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`


If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`


If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`


Find the second order derivative of the function.

`x^20`


Find the second order derivative of the function.

x . cos x


Find the second order derivative of the function.

log x


Find the second order derivative of the function.

x3 log x


Find the second order derivative of the function.

ex sin 5x


Find the second order derivative of the function.

e6x cos 3x


Find the second order derivative of the function.

tan–1 x


If y = 5 cos x – 3 sin x, prove that `(d^2y)/(dx^2) + y = 0`


If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0


If y = Aemx + Benx, show that `(d^2y)/dx^2  - (m+ n) (dy)/dx + mny = 0`


If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`


If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`


If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`


Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^"log x"`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`


Find `("d"^2"y")/"dx"^2`, if y = log (x).


Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2


Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`


If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`


`sin xy + x/y` = x2 – y


sec(x + y) = xy


tan–1(x2 + y2) = a


(x2 + y2)2 = xy


If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1 


Derivative of cot x° with respect to x is ____________.


If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.


Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,

A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`

and B(x) = [A(x)]T A(x). Then determinant of B(x) ______


If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.


If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.


If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.


Read the following passage and answer the questions given below:

The relation between the height of the plant ('y' in cm) with respect to its exposure to the sunlight is governed by the following equation y = `4x - 1/2 x^2`, where 'x' is the number of days exposed to the sunlight, for x ≤ 3.

  1. Find the rate of growth of the plant with respect to the number of days exposed to the sunlight.
  2. Does the rate of growth of the plant increase or decrease in the first three days? What will be the height of the plant after 2 days?

`"Find"  (d^2y)/(dx^2)  "if"  y=e^((2x+1))`


Find `(d^2y)/dx^2 if, y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`


Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`


Find `(d^2y)/dx^2  "if,"  y= e^((2x+1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, y = `e^(2x +1)`


Share
Notifications



      Forgot password?
Use app×