Share
Notifications

View all notifications
Advertisement

If X + a is a Common Factor of Expressions F(X) = X2 + Px + Q and G(X) = X2 + Mx + N; Show that : A=(N-q)/(M-p) - Mathematics

Login
Create free account


      Forgot password?

Question

If x + a is a common factor of expressions f(x) = x2 + px + q and g(x) = x2 + mx + n; 

show that : `a=(n-q)/(m-p)` 

Solution

`f(x)=x^2+px+q` 

it is given that (x+a) is a factor of f(x) 

∴ f(-a)=0 

 ⇒`(-a)^2+p(-a)+q=0 ` 

 ⇒ `a^2-pa+q=0 `

 ⇒ `a^2=pa-q ` ........(1) 

`g(x)=x^2+mx+n `

it is given thhat (x+a) is a factor of g (x). 

∴ `g(-a)=0 `

  ⇒ `(-a)^2+m(-a)+n=0 `

  ⇒ `a^2-ma+n=0 `

  ⇒ `a^2=ma-n` ........(2) 

from (1) and (2), we get, 

`pa-q=ma-n `

`n-q=a(m-p) `

`a=(n-q)/(m-p)` 

Hence, proved.

  Is there an error in this question or solution?
Advertisement

APPEARS IN

 Selina Solution for Concise Mathematics for Class 10 ICSE (2020 (Latest))
Chapter 8: Remainder and Factor Theorems
Exercise 8(B) | Q: 7 | Page no. 112
Advertisement

Video TutorialsVIEW ALL [1]

If X + a is a Common Factor of Expressions F(X) = X2 + Px + Q and G(X) = X2 + Mx + N; Show that : A=(N-q)/(M-p) Concept: Factor Theorem.
Advertisement
View in app×