Advertisement

If X is a binomial variate with parameters n and p, where 0 < p < 1 such that P ( X = r ) P ( X = n − r ) is independent of n and r, then p equals - Mathematics

Question

If X is a binomial variate with parameters n and p, where 0 < p < 1 such that \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\text{ is } \] independent of n and r, then p equals 

Options
  •  1/2

  • 1/3

  •  1/4

  •  None of these

     

Solution

 1/2
Given that P(X=r) = k P(X=n -r), where k is independent of n and r .

\[^{n}{}{C}_r p^r q^{n - r} = k ^{n}{}{C}_{n - r} p^{n - r} q^r \]

\[\text{ We have } ^{n}{}{C}_r = ^{n}{}{C}_{n - r} \text{ and also q }   = 1 - p\]

\[\text{ Hence, the equation changes to the following } :\]

\[ p^r (1 - p )^{n - r} = \text{ k } p^{n - r} (1 - p )^r \]

\[ \Rightarrow (1 - p )^{n - 2r} = \text{ k }p^{n - 2r} \]

\[ \Rightarrow \left( \frac{q}{p} \right)^{n - 2r} = k \]

\[ \text{ This is possible when p = q and k becomes 1 .}  \]

\[\text{ Hence,}  p = q = \frac{1}{2}\]

  Is there an error in this question or solution?
Advertisement

APPEARS IN

Advertisement

Video TutorialsVIEW ALL [1]

If X is a binomial variate with parameters n and p, where 0 < p < 1 such that P ( X = r ) P ( X = n − r ) is independent of n and r, then p equals Concept: Bernoulli Trials and Binomial Distribution.
Advertisement
Share
Notifications

View all notifications
Login
Create free account


      Forgot password?
View in app×