if x = `(6ab)/(a + b)` find the value of `(x + 3a)/(x - 3a) = (x + 3b)/(x - 3b)`
Advertisement Remove all ads
Solution
`x = (6ab)/(a + b)`
`=> x/(3a) = (2b)/(a + b)`
Aplying compinendo and dividendo
`(x + 3a)/(x - 3a) = (2b + a + b)/(2b - a - b)`
`(x + 3a)/(a - 3a) = (3b + a)/(b - a)` ...(1)
Again x = `(6ab)/(a + b)`
`=> x/(3b) = (2a)/(a + b)`
Applying componendo and dividendo
`(x + 3b)/(x - 3b) = (2a + a + b)/(2a - a - b)`
`(x + 3b)/(x - 3b) = (3a + b)/(a - b)` ....(2)
From (1) and (2)
`(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) = (3b + a)/(b -a) + (3a + b)/(a - b)`
`(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) = (-3b -a + 3a + b)/(a - b)`
`(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) = (2a - 2b)/(a - b) = 2`
Concept: Componendo and Dividendo Properties
Is there an error in this question or solution?
APPEARS IN
Advertisement Remove all ads