If x = 4t1+t2, y = 3(1-t21+t2), then show that dydx=-9x4y - Mathematics and Statistics

Advertisements
Advertisements
Sum

If x = `(4"t")/(1 + "t"^2)`, y = `3((1 - "t"^2)/(1 + "t"^2))`, then show that `("d"y)/("d"x) = (-9x)/(4y)` 

Advertisements

Solution

x = `(4"t")/(1 + "t"^2)`

Differentiating both sides w.r.t. ‘t’, we get

`("d"x)/"dt" = "d"/"dt" ((4"t")/(1 + "t"^2))`

= `((1 + "t"^2)*"d"/"dt"(4"t") - 4"t"*"d"/"dt"(1 + "t"^2))/(1 + "t"^2)^2`

= `((1 + "t"^2)(4) - 4"t"(0 + 2"t"))/(1 + "t"^2)^2`

= `(4 + 4"t"^2 - 8"t"^2)/(1 + "t"^2)^2`

= `(4 - 4"t"^2)/(1 + "t"^2)^2`

= `(4(1 - "t"^2))/(1 + "t"^2)^2`

y = `3((1 - "t"^2)/(1 + "t"^2))`

`("d"y)/"dt" = 3*"d"/"dt"((1 - "t"^2)/(1 + "t"^2))`

= `3[((1 + "t"^2)*"d"/"dt"(1 - "t"^2) - (1 - "t"^2)*"d"/"dt"(1 + "t"^2))/(1 + "t"^2)]`

= `3[((1 + "t"^2)(0 - 2"t") - (1 - "t"^2)(0 + 2"t"))/(1 + "t"^2)^2]`

= `3[(-2"t"(1 + "t"^2) - 2"t"(1 - "t"^2))/(1 + "t"^2)^2]`

= `3(- 2"t")[(1 + "t"^2 + 1 - "t"^2)/(1 + "t"^2)^2]`

= `- 6"t" xx 2/(1 + "t"^2)^2`

= `(-12"t")/(1 + "t"^2)^2`

∴ `("d"y)/("d"x) = (("d"y)/("dt"))/(("d"x)/("dt"))`

= `((-12"t")/((1 + "t"^2)^2))/((4(1 - "t"^2))/((1 + "t"^2)^2)`

= `("d"y)/("d"x) = (-3"t")/(1 - "t"^2)`    ......(i)

Also, `(-9x)/(4y) = (-9((4"t")/(1 + "t"^2)))/(4 xx 3((1 - "t"^2)/(1 + "t"^2))`

= `(-3"t")/(1 -"t"^2)`     ......(ii)

From (i) and (ii), we get

`("d"y)/("d"x) = (-9x)/(4y)`

Concept: Derivatives of Parametric Functions
  Is there an error in this question or solution?
Chapter 1.3: Differentiation - Q.5

RELATED QUESTIONS

Find `"dy"/"dx"`, if x = e3t, y = `"e"^((4"t" + 5))`


Find `"dy"/"dx"`, if x = `sqrt(1 + "u"^2), "y" = log (1 + "u"^2)`


Find `"dy"/"dx"`, if Differentiate 5x with respect to log x


Solve the following.

If x = `"a"(1 - 1/"t"), "y" = "a"(1 + 1/"t")`, then show that `"dy"/"dx" = - 1`


Solve the following.

If x = `"4t"/(1 + "t"^2), "y" = 3((1 - "t"^2)/(1 + "t"^2))` then show that `"dy"/"dx" = (-9"x")/"4y"`.


Choose the correct alternative.

If x = 2at2 , y = 4at, then `"dy"/"dx" = ?`


Find `"dy"/"dx"` if x = 5t2, y = 10t.  


If x sin(a + y) + sin a cos(a + y) = 0 then show that `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`


Choose the correct alternative:

If x = 2am, y = 2am2, where m be the parameter, then `("d"y)/("d"x)` = ? 


If x = `"a"("t" - 1/"t")`, y = `"a"("t" + 1/"t")`, where t be the parameter, then `("d"y)/("d"x)` = ?


State whether the following statement is True or False:

If x = 2at, y = 2a, where t is parameter, then `("d"y)/("d"x) = 1/"t"`


State whether the following statement is True or False:

If x = 5m, y = m, where m is parameter, then `("d"y)/("d"x) = 1/5`


Find `("d"y)/("d"x)`, if x = em, y = `"e"^(sqrt("m"))`

Solution: Given, x = em and y = `"e"^(sqrt("m"))`

Now, y = `"e"^(sqrt("m"))`

Diff.w.r.to m,

`("d"y)/"dm" = "e"^(sqrt("m"))("d"square)/"dm"`

∴ `("d"y)/"dm" = "e"^(sqrt("m"))*1/(2sqrt("m"))`    .....(i)

Now, x = em

Diff.w.r.to m,

`("d"x)/"dm" = square`    .....(ii)

Now, `("d"y)/("d"x) = (("d"y)/("d"m))/square`

∴ `("d"y)/("d"x) = (("e"sqrt("m"))/square)/("e"^"m")`

∴  `("d"y)/("d"x) = ("e"^(sqrt("m")))/(2sqrt("m")*"e"^("m")`


If x = `sqrt(1 + u^2)`, y = `log(1 + u^2)`, then find `(dy)/(dx).`


Find `dy/dx`  if,  `x = e^(3t) , y = e^sqrtt`


Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`


If x = f(t) and y = g(t) are differentiable functions of t, then prove that:

`dy/dx = ((dy//dt))/((dx//dt))`, if `dx/dt ≠ 0`

Hence, find `dy/dx` if x = a cot θ, y = b cosec θ.


Find the derivative of 7x w.r.t.x7


Suppose y = f(x) is differentiable function of x and y is one-one onto, `dy/dx ≠ 0`. Also, if x = f–1(y) is differentiable, then prove that `dx/dy = 1/((dy/dx))`, where `dy/dx ≠ 0`

Hence, find `d/dx(tan^-1x)`.


Find `dy/dx` if, x = e3t, y = `e^((4t+5))`


Find `dy/dx` if, x = `e^(3t)`, y = `e^(4t+5)`


If x = f(t) and y = g(t) are differentiable functions of t, so that y is function of x and `("d"x)/"dt"≠0` then prove that `"dy"/("d"x)=("dy"/"dt")/(("d"x)/"dt")`.

Hence find `"dy"/("d"x)`, if x = at2, y = 2at.


Find `dy/dx if, x = e^(3t),y=e^((4t+5))`


 Find `dy/dx` if,

`x = e ^(3^t), y = e^((4t + 5))`


Find `dy/dx` if, `x=e^(3t), y=e^((4t+5))`


 Find `dy/dx if,x = e^(3^T), y = e^((4t + 5)`


Find `dy/dx` if x= `e^(3t)`, y =`e^((4t+5))`


Share
Notifications



      Forgot password?
Use app×