Advertisement Remove all ads

If x = 30°, verify that (i) tan 2x=(2tan x)/(1-tan ^2x) - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

If x = 30°, verify that

(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`

(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`

Advertisement Remove all ads

Solution

(i) When x = 30°, we have 2x = 60° .

∴ tan 2x = tan 60° = √3

`\text{And, }\frac{2\tan x}{1-\tan ^{2}x}=\frac{2\tan 30^\circ}{1-\tan ^{2}30^\circ }`

`=\frac{2\times \frac{1}{\sqrt{3}}}{1-( \frac{1}{\sqrt{3}})^{2}}`

`=\frac{2/\sqrt{3}}{1-\frac{1}{3}}=\frac{2/\sqrt{3}}{2/3}=\frac{2}{\sqrt{3}}\times\frac{3}{2}=\sqrt{3}`

`\therefore \tan 2x=\frac{2\tan x}{1-\tan ^{2}x`

(ii) When x = 30°, we have 2x = 60°.

`\therefore \sqrt{\frac{1-\cos 2x}{2}}=\sqrt{\frac{1-\cos 60^\circ }{2}}`

`\sqrt{\frac{1-\frac{1}{2}}{2}}=\sqrt{\frac{1}{4}}=\frac{1}{2}`

And, sinx = sin30° = 1/2

`\therefore \sin x=\frac{\sqrt{1-\cos 2x}}{2}`

Concept: Trigonometric Ratios of Some Special Angles
  Is there an error in this question or solution?
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×