if `x = 2 + sqrt3`,find the value of `x^2 + 1/x^2`
Solution
We know that `x^3 + 1/x^3 = (x + 1/x)(x^2 - 1 + 1/x^2)`. We have to find the value of `x^3 + 1/x^3`
As x = `2 + sqrt3` therefore
`1/x = 1/(2 + sqrt3)`
We know that rationalization factor for `2 + sqrt3` is `2 - sqrt3`. We will multiply numerator and denominator of the given expression `1/2 + sqrt3` by `2 - sqrt3` to get
`1/x = 1/(2 + sqrt3) xx (2 - sqrt3)/(2 - sqrt3)`
`= (2 - sqrt3)/((2)^2 - (sqrt3)^2)`
`= (2 - sqrt3)/(4 - 3)`
`= 2 - sqrt3`
Putting the value of x and 1/x we get
`x^3 + 1/x^3= (2 + sqrt3 + 2 - sqrt3)((2 + sqrt3)^2 - 1+ (2 - sqrt3)^2)`
= `4(2^2 + (sqrt3))^2 + 2 xx 2 xx sqrt3 - 1 + 2^2 + (sqrt3)^2 - 2 xx 2 xx sqrt3)`
`= 4(4 + 3 + 4sqrt3 - 1 + 4 + 3 - 4sqrt3)`
= 52
Hence the value of the given expression 52.