Advertisement Remove all ads

If →A,→B,→C Are Mutually Perpendicular Vectors of Equal Magnitudes, Show that the Vector →A+ →B+→C is Equally Inclined to →A,→B and →C. - Mathematics

Answer in Brief

If `veca, vecb, vecc` are mutually perpendicular vectors of equal magnitudes, show that the vector `veca +  vecb+ vecc` is equally inclined to `veca, vecb` and `vecc`.

Advertisement Remove all ads

Solution

Since `veca , vecb  "and"  vec c` are mutually perpendicular vectors, we have

`veca . vecb = vecb . vecc = vec c . vec a = 0`

It is given that:

`|vec a| = |vec b| = |vec c|`

Let vector `vec a + vec b + vec c` be inclined to `veca , vecb  "and"  vec c` at angles `theta_1,theta_2` and `theta_3` respectively.

Then, we have:

cos θ1 = `((vec a + vec b + vec c).vec a)/(|vec a + vec b + vec c| |vec a|) = (vec a .vec a + vec b. vec a + vec c.veca)/(|vec a + vec b + vec c||vec a|)`

`= |vec a|^2/(|vec a + vec b + vec c||vec a|)`         .....`[vecb. vec a = vec c. vec a = 0]`

`=|veca|/(|veca + vecb + vecc|)`

cosθ2 = `((vec a+vec b +vec c).vec b)/(|vec a + vec b + vec c|.|vec b|) =(vec a .vec b + vec b. vec b + vec c.vec b)/(|vec a + vec b + vec c||vec b|)` 

`= |vec b|^2/(|vec a + vec b + vec c||vec b|)`         .....`[vec a. vec b = vec c. vec b = 0]`

`=|vecb|/(|veca + vecb + vecc|)`

cosθ3 = `((vec a+vec b +vec c).vec c)/(|vec a + vec b + vec c|.|vec c|) =(vec a .vec c + vec b. vec c + vec c.vec c)/(|vec a + vec b + vec c||vec c|)` 

`= |vec c|^2/(|vec a + vec b + vec c||vec c|)`         .....`[vec a. vec c = vec b. vec c = 0]`

`=|vecc|/(|veca + vecb + vecc|)`

Now, as `|vec a| = |vec b| = |vec c|` , cos θ1 = cosθ2 = cosθ3

∴ θ1 = θ2 = θ3 

Hence, the vector `(veca + vecb + vecc)` is equally inclined to `veca, vecb " and " vecc`

Concept: Magnitude and Direction of a Vector
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×