# If V Is the Volume of a Cuboid of Dimensions A, B, C And S is Its Surface Area, Then Prove that - Mathematics

If V is the volume of a cuboid of dimensions a, b, c and S is its surface area, then prove that $\frac{1}{V} = \frac{2}{S}\left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$

#### Solution

$\text { It is given that V is the volume of a cuboid of length = a, breadth = b and height = c . Also, S is surface area of cuboid . }$

$\text { Then, V = a } \times b \times c$

$\text { Surface area of the cuboid } = 2 \times \text { (length } \times \text { breadth + breadth }\times \text { height + length } \times \text { height) }$

$\Rightarrow S = 2 \times (a \times b + b \times c + a \times c)$

$\text { Let us take the right - hand side of the equation to be proven } .$

$\frac{2}{S}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) = \frac{2}{2 \times (a \times b + b \times c + a \times c)} \times (\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$

$=\frac{1}{(a \times b + b \times c + a \times c)} \times (\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$

$\text { Now, multiplying the numerator and the denominator with a } \times b \times c, \text { we get: }$

$\frac{1}{(a \times b + b \times c + a \times c)} \times (\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) \times \frac{a \times b \times c}{a \times b \times c}$

$=\frac{1}{(a \times b + b \times c + a \times c)} \times (\frac{a \times b \times c}{a}+\frac{a \times b \times c}{b}+\frac{a \times b \times c}{c}) \times \frac{1}{a \times b \times c}$

$=\frac{1}{(a \times b + b \times c + a \times c)} \times (b\times c+a\times c+a\times b) \times \frac{1}{a \times b \times c}$

$=\frac{1}{(a \times b + b \times c + a \times c)}\times(a\times b+b\times c+a\times c) \times \frac{1}{a \times b \times c}$

$=\frac{1}{a \times b \times c}$

$=\frac{1}{V}$

$\therefore \frac{2}{S}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) = \frac{1}{V}$

Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Class 8 Maths
Chapter 21 Mensuration - II (Volumes and Surface Areas of a Cuboid and a Cube)
Exercise 21.4 | Q 2 | Page 30