Advertisement Remove all ads

# If V and S Are Respectively the Vertex and Focus of the Parabola Y2 + 6y + 2x + 5 = 0, Then Sv = - Mathematics

MCQ

If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV

#### Options

• 1/2

• none of these

Advertisement Remove all ads

#### Solution

1/2

Given:
The vertex and the focus of a parabola are V and S, respectively.
The given equation of parabola can be rewritten as follows:

$\left( y + 3 \right)^2 - 9 + 5 + 2x = 0$

$\Rightarrow \left( y + 3 \right)^2 + 2x = 4$
$\Rightarrow \left( y + 3 \right)^2 = 4 - 2x$
$\Rightarrow \left( y + 3 \right)^2 = - 2\left( x - 2 \right)$

Let

$Y = y + 3, X = x - 2$
Then, the equation of parabola becomes $Y^2 = - 2X$
Vertex = $\left( X = 0, Y = 0 \right) = \left( x - 2 = 0, y + 3 = 0 \right) = \left( x = 2, y = - 3 \right)$
Comparing with y2 = 4ax:$4a = 2 \Rightarrow a = \frac{1}{2}$
Focus = $\left( X = \frac{- 1}{2}, Y = 0 \right) = \left( x - 2 = \frac{- 1}{2}, y + 3 = 0 \right) = \left( x = \frac{3}{2}, y = - 3 \right)$
⇒ SV = $\sqrt{\left( 2 - \frac{3}{2} \right)^2 + \left( - 3 + 3 \right)^2} = \frac{1}{2}$

Is there an error in this question or solution?
Advertisement Remove all ads

#### APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 25 Parabola
Q 9 | Page 29
Advertisement Remove all ads

#### Video TutorialsVIEW ALL 

Advertisement Remove all ads
Share
Notifications

View all notifications

Forgot password?