Advertisement Remove all ads

If U = R 2 Cos 2 θ , V = R 2 Sin 2 θ . Find ∂ ( U , V ) ∂ ( R , θ ) - Applied Mathematics 1

Sum

If `u=r^2cos2theta, v=r^2sin2theta. "find"(del(u,v))/(del(r,theta))`

Advertisement Remove all ads

Solution

`u=r^2cos2theta`     `v=r^2sin2theta`

Diff. u and v w.r.t r and 𝜽 partially to apply it in jacobian

`(del(u,v))/(del(r,theta))=|(u_r,u_theta),(v_r,v_theta)|=|(2rcos2theta,-2r^2sin2theta),(2rsin2theta,2r^2cos2theta)|`

`=4r^3cos^2 2theta+4r^3sin^2 2theta`

`=4r^3(cos^2 2theta+sin^2 2theta)`

`(del(u,v))/(del(r,theta))=4r^3`

 

Concept: Jacobian
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×