Advertisement Remove all ads

If U= F ( Y − X X Y , Z − X X Z ) , Show that X 2 ∂ U ∂ X + Y 2 ∂ U ∂ Y + X 2 ∂ U ∂ Z = 0 - Applied Mathematics 1

If u=`f((y-x)/(xy),(z-x)/(xz)),"show that"  x^2 (del_u)/(del_x)+y^2 (del_u)/(del_y)+x^2 del_u/del_z=0`

Advertisement Remove all ads


Let  u=f(r,s)

∴` r=( y-x)/(xy)`                      ∴ `s=(z-x)/(xz)`

∴ `del_u/del_x=(del_u del_r)/(del_r del_x)+(del_u del_s)/(del_s del_x)=(del_u 1)/(del_r x^2)+del_u/del_s((-1)/x^2)` 

`del_u/del_y=(del_u del_r)/(del_r del_x)+(del_u del_s)/(del_s del_y)=del_(-1)/(del_r y^2)+del_u/del_s(0)` 

`del_u/del_z=(del_u del_r)/(del_r del_z)+(del_u del_s)/(del_s del_z)=del_u/del_r(0)+del_u/del_s(1/z^2)` 

∴ `x^2 del_u/del_x+y^2 del_u/del_y+z^2 del_u/del_z=del_u/del_r-del_u/del_s-del_u/del_r+del_u/del_s` 

`x^2 del_u/del_x+y^2 del_u/del_y+z^2 del_u/del_z=0`

Hence proved. 

Concept: .Circular Functions of Complex Number
  Is there an error in this question or solution?
Advertisement Remove all ads


Advertisement Remove all ads
Advertisement Remove all ads

View all notifications

      Forgot password?
View in app×